
Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

 A FAUST-​BASED​ ​RE​-​CREATION​ ​OF​ ​THE​ ​POWER​ ​AMP​ ​STAGE

FOR​ W​EB​A​UDIO​-​BASED​ ​SIMULATIONS​ ​OF​ ​GUITAR​ ​TUBE​ ​AMPLIFIERS

Michel Buffa Jerome Lebrun

Université Côte d’Azur, CNRS, INRIA Université Côte d’Azur, CNRS
Sophia Antipolis, France Sophia Antipolis, France

michel.buffa@univ-cotedazur.fr lebrun@i3s.unice.fr

A​BSTRACT
In this paper, we detail our on-going browser-based
re-creations of famous tube guitar amplifiers and describe
the JavaScript implementations we have been developing
using the WebAudio API. The tricky part of such amplifiers
is the power stage (Power Amp) which contains a
parametric negative feedback loop. We show the limits of
the high-level WebAudio API layer, and how FAUST
allows us to re-implement the Power Amp part more
faithfully. Finally we also compare FAUST vs JavaScript
development, and mention future optimizations.

1. I​NTRODUCTION

Since 2015, we have been designing and developing
faithful simulations of iconic tube guitar amplifiers like the
Marshall JCM 800 or the Mesa-Boogie 2:90, used by many
famous artists (AC/DC, Guns and Roses, Deep Purple,
Metallica, etc.), ​that can run in a web browser ​[1].
This work consisted in emulating the different parts of the
electronic circuit of this amplifier using WebAudio,
implementing the necessary signal processing algorithms
using the available API, and finding adequate solutions to
circumvent some limitations specific to the web browser
environment (thread priority, latency, JavaScript API
limitations). Finally, we extensively compared
(quantitatively and qualitatively) our realization with the
state of the art, i.e. native simulations, mostly commercial,
written in C++, and not having the constraints of webapps.
The results exceeded our expectations. Since then, we have
continued this work by refining the models used in the
simulation, and we designed a framework to reproduce
different electronic architectures present in various other
tube amplifiers found in many musicians' equipment [2].
We can now simulate for example a Fender, a Vox or a
Mesa Boogie amplifier, etc. or even create new original
designs. These customizable simulations have been tested
by professional guitarists, are being used by music schools
on an experimental basis and are the subject of a marketing
contract by the CNRS in order to be included as plugins [3,
4] in an online commercial digital audio workstation.
So far, our simulations were fully developed in JavaScript
and based on the WebAudio API.

 2. W​EB​A​UDIO
WebAudio is a W3C-standard JavaScript API that relies on 1

building an "audio graph" by connecting processing nodes
one to another. The signal is sequentially processed through
the block diagram where each node crossed can modify the
signal (e.g. a filter node may be used to remove
high-pitched sounds, etc ...). Some particular nodes can also
be used as a sound source (audio file, wave generator, link
to an HTML5 element <audio> or <video>).

Fig. 1.​ High level simulation. The lamps and filters are

identified and simulated part by part using the WebAudio
API.

To our knowledge, there is no previous research work that
has tried to simulate a complete guitar amplifier using
WebAudio. When we started, we made the choice of
relying on higher level psycho-acoustic emulations, in
which the "logical" parts are well identified (filters, lamps,
etc.) and perceptually emulated using separate templates for
each part (Fig. 1). This work has been presented in [1] and
validated by professional guitar players during different
campaigns of user tests. This may be in theory less accurate
than a 'global' physical simulation because some effects and
interactions such as feedback loops from overloaded tubes
or the damping factor of the loudspeaker impedance on the
power amplifier may not be precisely taken into account.
However, this approach is much simpler and more tunable.
It can be implemented real-time within a browser and is

1 ​https://www.w3.org/TR/webaudio/

IFC-1

https://www.w3.org/TR/webaudio/

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

surely more adapted to WebAudio, its ecosystem and its
limitations.
In our approach, we precisely analyzed the electronic
schematics of amplifiers: lamps, filters structures, power
supply, output transformers were identified and simulated
part by part by JavaScript code relying on the WebAudio
API. WebAudio provides a set of "high-level" nodes (such
as the WaveShaper node and the BiquadFilter node) that
can be used to model the lamps and filters, and it has been
shown that when properly used, waveshaping techniques , 2

combined with proper oversampling and filtering, can give
quite good results [5].

One big advantage of JavaScript/WebAudio API is the
really flexible and dynamic way you can manipulate the
audiograph (by changing its topology in real-time, even
while playing guitar) or the parameters of the different
nodes, in particular, you can reshape in real-time the
transfer functions used by the waveshaper nodes.
Another advantage of using WebAudio high level nodes, is
that most of the audio processing is done in their C++
implementation that lies in the web browser internals, so
performance is generally not an issue. Our simulation has a
very low CPU impact and runs audio processing threads
with the highest priority. On a MacBook Pro from 2016, we
could run up to 15 amp simulations in parallel (all stages:
preamp, tonestack, power amp, speaker simulation), in a
DAW, without noticing any glitche and with a CPU stress
level of less than 50%.

However, until recently, one main limitation of the
WebAudio API design was that default signal processing is
constrained to block-processing of chunks of 128 samples
at a time, and until very recently it was not possible to do
stream processing at the sample-wise level without
introducing glitches and latency. Not being able to perform
processing with time-granularity below this 3ms limit
caused a lot of issues in the implementation of the
PowerAmp part of the amplifier schematic. Indeed, in its
classic Push/Pull configuration, the power stage includes a
crucial negative feedback loop that could not be faithfully
simulated without introducing customized solutions to
mitigate this major limitation.
This issue has been recently partially solved with the arrival
of the AudioWorklet node and a new WebAssembly
standard in 2018 . Writing custom DSP code in JavaScript, 3

or coding in WebAssembly by hand, is nevertheless quite
tedious. Fortunately, FAUST quickly proposed
WebAudio/WebAssembly as a compilation target and
proved to be an ideal framework for developing powerful
custom code (we even did some personal contributions to
FAUST's WebAudio support) [6].

2 ​The most straightforward method for obtaining signal distortion with
digital devices is to apply an instantaneous nonlinear transformation, using a
so-called “transfer function” from the input signal to the output variable.
This type of timbre alteration is coined ​waveshaping​ [11, 12].
3 ​WebAssembly is a W3C standard: a portable binary-code format for
executable programs, firstly to be used on the Web, but also on native
environments. WebAssembly aims to execute at native speed by taking
advantage of common hardware capabilities available on a wide range of
platforms. See ​https://webassembly.org​.

In this paper, we will detail how a PowerAmp works
(Section 3), introduce our initial solution to mitigate the
block-processing limitations of WebAudio (Section 4), and
devote the rest of the article to detail our FAUST and
WebAssembly-based approaches to achieve more faithful
low-latency simulations (Section 5). We will conclude by
comparing the advantages and disadvantages of the two
approaches (JavaScript + WebAudio high level nodes vs.
FAUST/WebAssembly) with special care on the
performance measurements (latency, cpu usage, etc.)
(Section 6).

3. T​UBE​ ​GUITAR​ ​AMPLIFIER​ ​DESIGN

3.1. Overview

A guitar amplifier is composed of different parts: usually, a
preamplifier stage, a so-called "tonestack" stage that
includes bass, midrange and treble controls, and a power
stage (the Power Amp). See Figure 2 and 3 below..

Fig. 2.​ The typical stages of guitar amplifiers and their
associated signal paths. Some brands (as Fender) may

switch the PreAmp and the Tonestack stages.

The preamplifier beefs up the high-impedance low-level
signal coming from the guitar pickup microphones to a
lower impedance mid voltage signal that can drive the
power stage. The preamplifier also shapes the tone of the
signal; high settings of the preamplifier lead to ‘overload’
that creates crunch/distorted sounds. The power amplifier
with the help of the output transformer outputs a very low
impedance, high current signal adequate to efficiently drive
a loudspeaker and to produce loud amplified sounds.
Another clear aim of guitar amps is of course to create
desirable distortions too.

Fig. 3. ​The back of a Marshall JCM800 power head. We

can see the two amplification stages.

To get a finer understanding of this critical stage, we will
further detail how a PowerAmp works, its role in the signal
chain and why the power amplifier is so tricky to emulate
due to the presence of some feedback loop in the circuitry.

IFC-2

https://webassembly.org/

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

3.2. The PowerAmp stage

Usually solely controlled by the Master Volume and
Presence knobs (Fig 4.), the Power Amp stage has a
profound impact on the sound and overall dynamics.
Indeed, the type of sound you can get from the preamp
stage alone remains on the lean side in terms of distortions.

Fig 4. ​The Power Amp stage is controlled by the Master

Volume and Presence knobs.

Referring to Kuehnel [7] and Denton [8], when you turn up
the volume of a tube amp using the Master Volume knob,
the power tubes get more and more distorted and the sound
gets thicker and thicker, and also less controlled. And as
you get closer to power saturation (i.e. clipping the power
tubes and/or saturating the output transformer core causing
the famous grinding effect, a mixture of
saturation/oscillations, but also possibly starving the power
supply - more about this later in this section), the output
dynamics get tighter, resulting in muddy distortions with a
heavier sound. The English slang to characterize these
sounds is difficult to translate: in French, one would speak
of "thick", "heavy", "metallic", "abrasive" (translation of
gritty), "rich" sounds.

Fig 5. ​For illustration, the Power Amp stage of a
Mesa/Boogie 2:90. The Negative Feedback Loop

(NFB)/Presence with its RC network is highlighted. The
JCM 800 has similar topology.

Fig 6. ​An abstraction of a classic Push/Pull Power Amp.

In Power Amps, the Negative Feedback Loop
(NFB)/Presence control (see Figs. 5 and 6) are typically
introduced to extend the usable frequency bandwidth by
limiting/reshaping the unwanted distortions originating
from the non-linearities of the output transformer at the
price of a slightly lower total gain. The negative feedback
loop (NFB) takes a portion of the signal from the output
transformer secondary winding, dephasing it with a 180
degree phase shift and re-injects it back into the splitter
stage (see the highlighted plot in Fig. 5 and the “Feedback”
loop in Fig. 6). Amplifiers without NFBs are usually more
powerful (higher gain) with more distortion, but their
coloration also tends to become rougher and unpredictable
when pushed into saturation. The NFB loop smoothes out
the sound by reducing the level of distortion in the parts of
the spectrum where it is most disturbing (typ. mid-range)
[7].
Unknown to concert stage or HiFi power amps, a
‘Presence’ control is added to the NFB loop of guitar amps
to allow control on the coloration of the NFB and thus to
provide a simple but efficient way of adjusting the
brightness and sharpness of the sound at the Power Amp
stage. The Presence may be looked at as a global
time/frequency control on the brightness of timbre by 4

altering the signal fed back from the negative feedback
loop. The effects of negative feedback can be reduced for
certain frequencies as the Presence knob controls the
resistor part of a RC network, hence a tunable filter made of
Resistors and Capacitors (RC) in the loop. With less
negative feedback in the high frequencies, the sound
becomes brighter, louder, more vivid and dynamic. The
behavior of this control is very different from those of the
tonestack (bass, midrange, treble), which merely equalizes
the output of the preamp. Namely, unlike conventional
treble control which is mainly subtractive, Presence control
is pseudo-additive in that it limits the fundamental
subtractive aspect of the NFB loop. ​It should be noticed
also that the NFB/Presence has a major influence at the
temporal level [9] as the RC networks controlled by the
Presence knob induce some frequency-dependent
group-delay in the NFB loop. This may explain the
blurring/sharpening effect that Presence has on the attack
slopes of the notes played, acting as a
“softening/anti-softening” pedal. This clearly motivates our
introduction of a curve-based parametric Presence control
to choose in which frequency band one wants its brightness.

To design properly a NFB/Presence circuit, lots of
parameters are involved and a lot of care must be taken
when adjusting them. With real amplifiers’ power amps,
manufacturers are very conservative: the allowed range of
Presence control is restricted so as to avoid unwanted
oscillations that may be destructive to the speaker/cabinet.
As a consequence, only subtle alterations (mostly
upper-mids/lower-high range brightness) are possible, the
sound signature being mainly carved through the preamp

4 ​Fender: Be in the Moment: The Presence Control Explained: What is it and
how can it help energize your live sound?
(​https://www.fender.com/articles/tech-talk/be-in-the-moment-the-presence-c
ontrol-explained​)

IFC-3

https://www.fender.com/articles/tech-talk/be-in-the-moment-the-presence-control-explained
https://www.fender.com/articles/tech-talk/be-in-the-moment-the-presence-control-explained

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

settings. In our simulations, the curve-based parametric
Presence control allows us to fully carve the time/frequency
coloration at the Power Amp level to add punch or special
effects to the output from the Preamp and Tonestack.
Some other important controls on the Power Amp are the
Master volume to adapt gain with the Preamp output level,
and the Bias setting of the tubes may be changed to
introduce some light non-linearities/asymmetries in the tube
response curves. In real-world tube Power Amps, Bias
allows us to change the class of operation of the tubes (typ.
class AB for push-pull) from almost class A to almost class
B. And of course the Presence setting for adjusting the
overall tone/brightness is quite important and can lead to
destructive positive feedback if not designed correctly (freq
ranges, etc.). Historically, some amps have a Power Amp
section which is more important in their sound signature, in
general they are the most "vintage" ones, think of the
Fenders, the first Marshalls, the Vox AC30 …
Improving the real-time dynamics in simulations is crucial
to get them more realistic . Namely, when pushed to their 5

limits by large transients, classic guitar tube amplifiers (esp.
with tube rectifiers based power supply) have a tendency
towards harmonic saturation with typical dynamic range
compression/expansion effects (known as ‘sag’ and
‘bloom’), temporal lag (known as ‘squish’) or spatialisation
artifacts (known as ‘swirl’) . Sag is consecutive to some 6

drooping of the supply voltage in the Preamp stage in
response to large transients. The recovery from Sag as
voltage supply returns to normal is coined as ‘Bloom’ and
is again a well appreciated effect. Now, Squish is linked to
some temporal hysteresis induced by some increased time
lag in the feedback loop - also in response to large
transients. Finally, Swirl is linked to saturation of the core
in the output transformer from overload, leading to phase
inconsistencies and spatial blurring of the chord played (ala
Univox Uni-Vibe pedal effect). All those effects proved to
be quite tricky to emulate in real-time . 7

We introduced a dedicated method to approximate these
advanced temporal, nonlinear behaviours of tubes (typ.
‘sag’/‘bloom’, ‘squish’/‘swirl’ effects). Namely, in the
WebAudio API, the slope of the tube transfer function
curves can be driven real-time by the power of input signal
enveloppe emulating hysteresis phenomena. Consequently,
to mimic this hysteresis and the sag in the response of a
tube Preamp stage, we implemented it with simple
dynamical real-time changes in the slopes of the transfer
functions in our preamp simulation . By properly adjusting 8

the threshold at which we get the squish, only the higher
power transients from the envelope amplitude will trigger
controlled change of slope. This is still an experimental
feature that needs to be properly adjusted and evaluated.
Figure 7 shows a curve animated in real time with
hysteresis behaviour in the transfer function triggered by
the input signal envelope.

5 Video: ​https://www.youtube.com/watch?v=zBhn7odezUQ
6 ​More details on: ​http://www.aikenamps.com/index.php/what-is-sag
7 ​Some examples at: ​http://www.diale.org/tube_emulation.html
8 See this in our amp simulation in this video:
https://www.youtube.com/watch?v=zBhn7odezUQ

Fig 7. ​A tool we developed in order to adjust the real-time
dynamics of the tube simulation based on waveshapers . 9

The Bias control corresponds to the idle voltage around
which the tubes are amplifying signals and thus controls
their linearity/asymmetry characteristics . With Bias, one 10

can change the amount of (negative) voltage offset applied
to the signal at the grid of the tubes. Colder settings will
make the pentodes/tetrodes draw less current, decreasing
the overall output volume and potentially introducing
cross-over distortion due to the class AB getting closer to
class B (which may be what a guitarist looks after to
achieve a more dirty/loose tone). Hotter settings will make
the pentodes/tetrodes draw more current moving closer to
class A, with a thicker, louder perceived output level and
eventually up to power supply “sagging” (depending on the
Sagging control setting), adding compression or, in extreme
cases, saturation and cleaning up the tone from potential
cross-over distortion.

4 - I​MPLEMENTING​ ​THE​ P​OWER​ A​MP​ ​STAGE
WITH​ W​EB​A​UDIO​ ​HIGH​ ​LEVEL​ ​NODES​, ​DEALING

WITH​ ​LIMITATIONS
In the current implementation, the presence filter is fully
customizable and can be controlled in real time using a
graphic equalizer (Fig. 8) to select the frequency range of
the filter.
The min and max values of the negative gain in the NFB
can also be adjusted using a slider. These tools (NFB and
Presence) are quite sensitive (at the edge of creating
positive feedback with oscillations and Larsen effects so we
provide controls in the GUI to adjust/restrict the admissible
range) but this novel presence control provides an utterly
powerful and spectacular tool to shape the final sound.
Being able to adjust all the parameters (gains, filter
parameters, transfer function of the waveshaper, etc.) is
crucial to fine tune this stage using WebAudio nodes. We
strongly advise the player to watch this YouTube video 11

which shows the differences in sound and dynamics with
and without this loop (Power Amp on / off) in our
simulation.

9 ​https://jsbin.com/zotaver/edit
10 Aiken - The last word on Biasing:
https://www.aikenamps.com/the-last-word-on-biasing
11 WebAudio implementation demo of the PowerAmp stage:
https://www.youtube.com/watch?v=-NdMdJQx2Bw

IFC-4

https://www.youtube.com/watch?v=zBhn7odezUQ
http://www.aikenamps.com/index.php/what-is-sag
http://www.diale.org/tube_emulation.html
https://www.youtube.com/watch?v=zBhn7odezUQ
https://jsbin.com/zotaver/edit
https://www.aikenamps.com/the-last-word-on-biasing
https://www.youtube.com/watch?v=-NdMdJQx2Bw

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

Fig 8. ​The settings of the NFB power amplifier can be
changed/adjusted dynamically on the fly, even while

playing, without generating any audio glitches/dropouts.

It sounds and plays very well (we made several user
evaluations [1, 2] that showed that guitarists, even
professional ones, liked the way the dynamics of a real amp
was simulated). As said in previous sections, we simulate
tubes using filters and waveshaper nodes with properly
adjusted transfer functions. As shown in Fig 8. The green
transfer function curve on the left of the graphic EQ
(presence bank of filters) is rather linear, meaning that only
little distortion is added to the signal, and only at high
amplitudes. Being able to adjust this function is also crucial
to avoid oscillations. On top of that, the Bias control has to
be properly adapted to the selected tube transfer functions
to guarantee coherent coloration/output volume (making it
easier to compare different tubes and choose the right one).

Nevertheless, we encountered many issues in the
implementation of our signal loops in WebAudio. Proper
simulations of NFB and Presence have been quite difficult
to achieve due to some limitations of the WebAudio API
and divergences/bugs in how browsers generally parse the
WebAudio graphs with loops. In the WebAudio API specs,
loops in the graph are required to include at least one delay
node. Without this delay node, Firefox stops rendering the
graph, while Chrome does not complain but adds, behind
the scenes, a 3 ms delay (the minimal delay from a frame
audio buffer of 128 sample-frames as within WebAudio
API, the signal is always processed in packets of 128
samples, which means that the minimum value for a delay
is 128 / sample rate, i.e. about 128/44100 = 3ms). With the
current limitations in WebAudio, and quite strangely, this
3ms delay in the loop to conform to the specs, brings
slightly different coloring of the amps between FF and
Chrome. We have reported these errors and discussed them
with the implementers (Raymond Toy from Google and
Paul Adenot from Firefox) but so far, nothing has been
fixed (September 2020). For a good implementation of
NFB, a stable delay of fewer samples would have been
preferable (higher delays increase latency and the softening
of attacks). Now, to faithfully implement loops like the
NFB with its RC networks inducing shorter delays, finer
precision at the level of some sample-frames is required.
To circumvent these limitations and allow a proper
sample-wise accuracy in the processing of loops, we
decided to re-implement the NFB loop (and other critical
parts in general) in FAUST as AudioWorklets, ending up
re-implementing all the processing nodes present in the
circuit: filters, gain and wave shaper, in this language.

5. FAUST ​IMPLEMENTATION​ ​OF
THE​ P​OWER​ A​MP​ ​STAGE

A guitar amplifier is composed of different parts: usually, a
Preamplifier stage, a so-called "Tonestack" stage that
includes bass, midrange and treble controls, and a Power
stage (the Power Amp). Our general approach consisted in
looking at the different parts we needed to re-create.
However, as mentioned in the previous section, the
poweramp stage is quite tricky to implement as it includes a
negative feedback loop. In our initial purely WebAudio
implementation [1, 2], we were using a bank of biquad
filters in series (for the presence implementation), a
waveshaper node with appropriate biquad filters (for
simulating tubes), some gain nodes (master volume at the
input of the stage, negative gain in the NFB loop and a few
others for fine tuning the signal level at different locations
in the audio graph), and a delay node (in the NFB loop).
Aware of the great difficulties encountered in simulating
the power amp in JavaScript/WebAudio, we first tried to
re-create as faithfully as possible the signal chain that gave
good results. For example, using the same types of filters
with the same parameters, the same transfer function with
the core issue of simulating properly a waveshaper in
FAUST, the same gain values, etc. And of course, we
looked closely at the behavior of the NFB loop whose delay
hopefully should be lower than the 3ms barrier imposed by
the previous implementation.
This way, we can replace the current power amp
implementation (made of a dozen of high level WebAudio
nodes) with a single FAUST generated AudioWorklet node

. 12

WebAudio comes with a set of classic biquad filters types:
lowpass, highpass, bandpass, lowshelf, highshelf, peaking,
notch and allpass. All these filters have a fixed set of
parameters: frequency, gain, Q and detune, whereas some
of these parameters are not relevant to some type of filters
(as Q for lowshelf/highshelf). FAUST does not come with
similar filters out of the box. After trying to adapt existing
FAUST filters to behave like WebAudio filter ones, and
after talking with FAUST and WebAudio implementers the
conclusion was that for a really faithfull behavior, it would
be better to start from the original C++ implementation of
the WebAudio filter API, taken from the Chromium
browser source code. The FAUST team did the port and
provided us with the so-called webaudio.lib that is now
available in the FAUST distribution.
For the power amp tubes, we looked at the way FAUST
developers simulated tubes (e.g. in the Guitarix project 13

source repository, in particular in the guitarix.lib file), or
waveshapers (as in several distortion plugins such as the
ones by Oleg Kapitonov or by Nick Thompson’s Creative 14

Intent Temper Distortion plugin). We found out that most 15

tube simulations relied on C/C++ code and could not be
used out of the box (typ. guitarix tube simulations), as we

12 We already did that in the past by replacing the tonestack stage by some
FAUST implementations [2].
13 ​http://guitarix.org/
14 ​https://github.com/olegkapitonov/Kapitonov-Plugins-Pack
15 ​https://github.com/creativeintent/temper

IFC-5

http://guitarix.org/
https://github.com/olegkapitonov/Kapitonov-Plugins-Pack
https://github.com/creativeintent/temper

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

must be able to run these in a Web browser, and the
FAUST toolchain still does not support hybrid FAUST/C
source code when the compilation target is set to
WebAudio/WebAssembly.

Fig. 9: ​FAUST transfer function, uses an approximation of

tanh for computational improvements . 16

Fig. 10: ​Left, the transfer function for our JS

implementation, Right, the one from the FAUST
implementation with k=1. 17

The Temper distortion simulation, however, used a 100%
FAUST based implementation of a simple waveshaper that
produced a warm, adjustable, distortion sound that could
easily fit our needs. We used it as a starting point.
Furthermore, the code contained the definition of a transfer
function curve that could be adjusted (i.e using a more
subtle/less aggressive curve). Fig. 9 shows the transfer
function from the Temper Distortion waveshaper code, that
is very close to the one we used in our JavaScript
implementation (see Fig. 10. for comparisons), the
parameter ​k​ driving the S shape of the curve.

Figs. 11 and 12 show the final diagram of the FAUST
implementation of the PowerAmp based on the Temper
Distortion source code. Differences from the Temper
Distortion source code are mainly the introduction of the
Presence (made of two peaking filters, at 2kHz and 4kHz)
in the feedback loop, the introduction of an adjustable
negative feedback gain, the removing of some unnecessary
elements (i.e. a resonant lowpass filter at the beginning of
our signal chain).

Fig. 11: ​Diagrams of the final implementation.

16 See ​http://www.musicdsp.org/showone.php?id=238
17 Check our online comparison tool:
https://jsbin.com/qifexor/edit?js,console,output​,

Fig. 12: ​The feedback circuit. The Presence filter is

obtained using a set of peaking filters ported in FAUST
from the WebAudio API implementation.

Fig. 13: ​GUI generated by the FAUST IDE, some extra

parameters (negative feedback gain, waveshaper; drive,
curve, saturation) are tweakable, enabling fine tuning of

the NFB loop.

Finally we added GUI elements (knobs) in order to fine
tune in real time different parameters (Fig. 13), in particular
the ones that control the waveshaper (drive, curve,
distorsion), the NFB gain and the Presence filters.
The current implementation (mainly based on the code
from the Temper Distortion) of the waveshaper does not
rely on pre-calculated point tables, but on a transfer
function applied to each sound sample, which leaves room
for optimization. The dynamic time response of the tubes is
approximated using an amplitude follower placed in the
signal chain just before the waveshaper that drives an
allpass filter (and which aims at modifying the DC offset,
and thus the slope of the curve). ​We still have to evaluate
whether this approach is as efficient or flexible as the
method we used previously in the JavaScript
implementation, which changes the slope but also the
S-shape of the curve (see section 3, Fig. 7).

Once our FAUST-based Power Amp re-creation was
functional and adjustable, we could proceed to the
evaluation phase.

Fig. 14: ​For testing purposes, we created a WebAudio

plugin from the FAUST code: using the WAP GUI Builder
we developed, integrated in the FAUST IDE.

IFC-6

https://jsbin.com/qifexor/edit?js,console,output

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

Fig. 15:​ The PowerAmp plugin in our pedalboard

application, with a version of our AmpSim in which we
bypassed our Power Amp pure-JavaScript version and the

cabinet simulator stages.

6. E​VALUATION
The first step of the evaluation was to listen to the global
overall sound when we used the Power Amp in standalone
mode, tweaking the different parameters (Master volume,
Presence, negative gain, transfer function parameters), and
to check its behavior compared to our previous
WebAudio/JavaScript implementation. We did some trials
using dry guitar sound samples, but also with a real guitar
as inputs. The general feeling is that the two main settings,
Master volume and Presence, reacted very closely with both
implementations. In addition, the classic effects of
oscillation and positive feedback could be obtained again
when pushing some parameters close to the limit values
(Presence, NFB gain).

In a second step we used the FAUST IDE to create a
WebAudio plugin from the FAUST implementation of the
Power Amp (Fig. 14) and we chained a special version of
our tube guitar amplifier simulations in which we bypassed
the embedded power amp and cabinet simulation stages
(Fig. 15), and compared with the full featured, JavaScript
based simulations. Results can be seen/heard in a video we
published online , or in the online pedalboard WebAudio 18

application . 19

The differences in terms of sound/timbre and playing
dynamics are small and subtle. However, we noticed that
the FAUST implementation was much more stable and
versatile when adjusting the internal parameters of the
feedback loop. The processing in our JavaScript
implementation was based on blocks of 128 samples,
inducing an undesirable delay of 3ms in the back-fed
signal as opposed to only two samples with the FAUST
loop . In the FAUST implementation, the measurement 20

tools (Fig. 16) proved the sample-wise nature of the
processing with a delay of just one-sample for the
NFB/Presence loop. This also explains the increased 21

stability of this loop. Now, in terms of aggregated latency

18 https://youtu.be/uNp-0hzveeo
19 ​https://mainline.i3s.unice.fr/Wasabi-Pedalboard/#​, check the PowerAmp
tab at bottom, drag’n’drop in the main area.
20 As measured in the FAUST IDE, using ​process = button("gate")
<: ((poweramp), _);​ style code and the embedded visualization tools.
21 As measured in the FAUST IDE, using ​process = button("gate")

<: ((poweramp), _);​ style code and the embedded visualisation tools.

for the Power Amp, we did measurements of the
“end-to-end” latency, from guitar to cabinet and obtained
consistently better values for latency with the new FAUST
implementation: around 20-21 ms compared to the 23-24
ms latency of our previous finely-tuned JavaScript
implementation (both using a Firefox Nightly 75.0a1
browser with an external Focusrite Scarlett and a Macbook
Pro 16 under 10.14). This confirms a saving of 3ms in
accordance with the difference of processing of loops
between FAUST (sample-wise) and WebAudio
API/JavaScript (block based).

Fig. 16: The latency can be measured achieving
sample-wise accuracy using the tools embedded in the IDE.
Yellow: a gate signal, Pink: the output from the PowerAmp.
X-axis is in samples.

In addition, the use of the FAUST IDE for coding,
debugging and profiling this Power Amp plugin has been
evaluated by six audio plugin developers with different
levels of expertise with the FAUST language. They had to
follow a tutorial that guided them and after that, they had to
answer a detailed survey. The IDE has been considered as
“very useful” for prototyping rapidly an audio plugin, prior
to polishing its GUI by hand, editing the HTML/CSS code.
Details of this evaluation are available in [13].

7. P​ERSPECTIVES​ ​AND​ ​CONCLUSIONS
FAUST has proven to be particularly suitable for porting
the JavaScript code of an existing Power Amp in a very
similar way, freeing it from the limitations, inconsistencies
and constraints of the WebAudio API. We performed
preliminary qualitative measurements and measured the
latency of the processing, which proved to be almost
identical. We did not investigate some aspects that can still
be improved/optimized, such as the implementation of a
full-featured waveshaper in FAUST (based on
pre-calculated tables and interpolation to describe the
transfer function, for example), or on more complex tube
models. At the evaluation level, additional systematic
measurements have to be made and the power amp
behavior should also be compared with native
implementations, for example, those of the TPA-1 by Ignit
Amps plugins, or the TSE X50 by TSE audio (in which 22 23

the poweramp stage can be isolated).

22 ​http://www.igniteamps.com/#tpa-1
23 ​https://www.tseaudio.com/software/x50v2

IFC-7

https://youtu.be/uNp-0hzveeo
https://mainline.i3s.unice.fr/Wasabi-Pedalboard/#
http://www.igniteamps.com/#tpa-1
https://www.tseaudio.com/software/x50v2

Proceedings of the 2​nd​ International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France, December 1-2, 2020

ACKNOWLEDGMENTS

This work was partially supported by the French Research
National Agency (ANR) and the WASABI [21] team
(contract ANR-16-CE23-0017-01).

R​EFERENCES

[1] Buffa, M. and Lebrun, J. 2017. Real Time Tube

Guitar Amplifier Simulation using WebAudio. In
Proc. 3rd Web Audio Conference ​(WAC’17), London,
UK. ​ISSN 2663-5844

[2] Buffa, M. and Lebrun, J. 2018. WebAudio Virtual
Tube Guitar Amps and Pedal Board Design. In ​Proc.
4th Web Audio Conference ​(WAC’18), Berlin,
Germany. ​ISSN 2663-5844

[3] Buffa, M., Lebrun, J., Kleimola, J., Larkin, O., and
Letz, S. 2018. Towards an Open Web Audio Plug-in
Standard. In ​Companion Proc. The Web Conference
2018 ​(WWW '18)​. ​Lyon, France. (April 23--27,
2018). 759-766. doi:10.1145/3184558.3188737

[4] Buffa, M., Lebrun, J., Kleimola, J., Larkin, O.,
Pellerin, G. and Letz, S. 2018. WAP: Ideas for a Web
Audio Plug-in Standard. In ​Proc. 4th Web Audio
Conference ​(WAC’18), Berlin, Germany. ​ISSN
2663-5844

[5] Pakarinen, J. and Yeh, D.T. 2009. A Review of
Digital Techniques for Modeling Vacuum-Tube
Guitar Amplifiers. ​Computer Music Journal​, 33(2),
85-100. doi:10.1162/comj.2009.33.2.85

[6] Ren, S., Letz, S., Orlarey, Y., Michon, R., Fober, D.
and al.. FAUST online IDE: dynamically compile and
publish FAUST code as WebAudio Plugins. ​In ​Proc.
5th Web Audio Conference ​(WAC’19)​, Trondheim,
Norway. ​ISSN 2663-5844

[7] Kuehnel, R. 2005. ​Circuit Analysis of a Legendary
Tube Amplifier: The Fender Bassman 5F6-A​. Pentode
Press. 2005. ​ISBN 978-0976982258

[8] Denton, D. 2013. ​Electronics for Guitarists​.
Springer-Verlag. 201​3. ​ISBN 978-1-4614-4087-1

[9] Letz, S., Orlarey, Y., and Fober, D. 2017. Compiling
Faust Audio DSP Code to WebAssembly. In Proc. ​3rd
Web Audio Conference (WAC’17), London, UK.
ISSN 2663-5844

[10] Alves, L.N. and Aguiar, R.L., 2005. On the Effect of
Time Delays in Negative Feedback Amplifiers. In
Proc. ​2005 IEEE Int. Symp. Circuits and Systems
(IEEE ISCAS 2005), Kobe, Japan. doi:
10.1109/ISCAS.2005.1464755

[11] Arfib, D. 1979. Digital Synthesis of Complex Spectra
by Means of Multiplication of Nonlinear Distorted
Sine Waves. ​J. AES, ​27(10):757–768.

[12] LeBrun, M. 1979. Digital Waveshaping Synthesis. ​J.
AES,​ 27(4):250–266.

[13] Ren, S., Letz, S., Orlarey, Y., Michon, R., Fober, D.,
Buffa, M., and Lebrun, J. 2020. Using Faust DSL to
Develop Custom, Sample Accurate DSP Code and

Audio Plugins for the Web Browser. ​J. AES, ​in Press,
doi:10.17743/jaes.2020.0014

IFC-8

