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A​BSTRACT 
In this paper, we detail our on-going browser-based        
re-creations of famous tube guitar amplifiers and describe        
the JavaScript implementations we have been developing       
using the WebAudio API. The tricky part of such amplifiers          
is the power stage (Power Amp) which contains a         
parametric negative feedback loop. We show the limits of         
the high-level WebAudio API layer, and how FAUST        
allows us to re-implement the Power Amp part more         
faithfully. Finally we also compare FAUST vs JavaScript        
development, and mention future optimizations. 

1. I​NTRODUCTION 

Since 2015, we have been designing and developing        
faithful simulations of iconic tube guitar amplifiers like the         
Marshall JCM 800 or the Mesa-Boogie 2:90, used by many          
famous artists (AC/DC, Guns and Roses, Deep Purple,        
Metallica, etc.), ​that can run in a web browser ​[1]. 
This work consisted in emulating the different parts of the          
electronic circuit of this amplifier using WebAudio,       
implementing the necessary signal processing algorithms      
using the available API, and finding adequate solutions to         
circumvent some limitations specific to the web browser        
environment (thread priority, latency, JavaScript API      
limitations). Finally, we extensively compared     
(quantitatively and qualitatively) our realization with the       
state of the art, i.e. native simulations, mostly commercial,         
written in C++, and not having the constraints of webapps.          
The results exceeded our expectations. Since then, we have         
continued this work by refining the models used in the          
simulation, and we designed a framework to reproduce        
different electronic architectures present in various other       
tube amplifiers found in many musicians' equipment [2].        
We can now simulate for example a Fender, a Vox or a            
Mesa Boogie amplifier, etc. or even create new original         
designs. These customizable simulations have been tested       
by professional guitarists, are being used by music schools         
on an experimental basis and are the subject of a marketing           
contract by the CNRS in order to be included as plugins [3,            
4] in an online commercial digital audio workstation. 
So far, our simulations were fully developed in JavaScript         
and based on the WebAudio API.  

 2. W​EB​A​UDIO 
WebAudio is a W3C-standard JavaScript API that relies on         1

building an "audio graph" by connecting processing nodes        
one to another. The signal is sequentially processed through         
the block diagram where each node crossed can modify the          
signal (e.g. a filter node may be used to remove          
high-pitched sounds, etc ...). Some particular nodes can also         
be used as a sound source (audio file, wave generator, link           
to an HTML5 element <audio> or <video>). 
 

 
Fig. 1.​ High level simulation. The lamps and filters are 

identified and simulated part by part using the WebAudio 
API. 

 
To our knowledge, there is no previous research work that          
has tried to simulate a complete guitar amplifier using         
WebAudio. When we started, we made the choice of         
relying on higher level psycho-acoustic emulations, in       
which the "logical" parts are well identified (filters, lamps,         
etc.) and perceptually emulated using separate templates for        
each part (Fig. 1). This work has been presented in [1] and            
validated by professional guitar players during different       
campaigns of user tests. This may be in theory less accurate           
than a 'global' physical simulation because some effects and         
interactions such as feedback loops from overloaded tubes        
or the damping factor of the loudspeaker impedance on the          
power amplifier may not be precisely taken into account.         
However, this approach is much simpler and more tunable.         
It can be implemented real-time within a browser and is          

1 ​https://www.w3.org/TR/webaudio/ 
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surely more adapted to WebAudio, its ecosystem and its         
limitations.  
In our approach, we precisely analyzed the electronic        
schematics of amplifiers: lamps, filters structures, power       
supply, output transformers were identified and simulated       
part by part by JavaScript code relying on the WebAudio          
API. WebAudio provides a set of "high-level" nodes (such         
as the WaveShaper node and the BiquadFilter node) that         
can be used to model the lamps and filters, and it has been             
shown that when properly used, waveshaping techniques ,       2

combined with proper oversampling and filtering, can give        
quite good results [5].  
 
One big advantage of JavaScript/WebAudio API is the        
really flexible and dynamic way you can manipulate the         
audiograph (by changing its topology in real-time, even        
while playing guitar) or the parameters of the different         
nodes, in particular, you can reshape in real-time the         
transfer functions used by the waveshaper nodes. 
Another advantage of using WebAudio high level nodes, is         
that most of the audio processing is done in their C++           
implementation that lies in the web browser internals, so         
performance is generally not an issue. Our simulation has a          
very low CPU impact and runs audio processing threads         
with the highest priority. On a MacBook Pro from 2016, we           
could run up to 15 amp simulations in parallel (all stages:           
preamp, tonestack, power amp, speaker simulation), in a        
DAW, without noticing any glitche and with a CPU stress          
level of less than 50%. 
 
However, until recently, one main limitation of the        
WebAudio API design was that default signal processing is         
constrained to block-processing of chunks of 128 samples        
at a time, and until very recently it was not possible to do             
stream processing at the sample-wise level without       
introducing glitches and latency. Not being able to perform         
processing with time-granularity below this 3ms limit       
caused a lot of issues in the implementation of the          
PowerAmp part of the amplifier schematic. Indeed, in its         
classic Push/Pull configuration, the power stage includes a        
crucial negative feedback loop that could not be faithfully         
simulated without introducing customized solutions to      
mitigate this major limitation. 
This issue has been recently partially solved with the arrival          
of the AudioWorklet node and a new WebAssembly        
standard in 2018 . Writing custom DSP code in JavaScript,         3

or coding in WebAssembly by hand, is nevertheless quite         
tedious. Fortunately, FAUST quickly proposed     
WebAudio/WebAssembly as a compilation target and      
proved to be an ideal framework for developing powerful         
custom code (we even did some personal contributions to         
FAUST's WebAudio support) [6].  
 

2 ​The most straightforward method for obtaining signal distortion with          
digital devices is to apply an instantaneous nonlinear transformation, using a           
so-called “transfer function” from the input signal to the output variable.           
This type of timbre alteration is coined ​waveshaping​ [11, 12]. 
3 ​WebAssembly is a W3C standard: a portable binary-code format for           
executable programs, firstly to be used on the Web, but also on native             
environments. WebAssembly aims to execute at native speed by taking          
advantage of common hardware capabilities available on a wide range of           
platforms. See ​https://webassembly.org​.  

In this paper, we will detail how a PowerAmp works          
(Section 3), introduce our initial solution to mitigate the         
block-processing limitations of WebAudio (Section 4), and       
devote the rest of the article to detail our FAUST and           
WebAssembly-based approaches to achieve more faithful      
low-latency simulations (Section 5). We will conclude by        
comparing the advantages and disadvantages of the two        
approaches (JavaScript + WebAudio high level nodes vs.        
FAUST/WebAssembly) with special care on the      
performance measurements (latency, cpu usage, etc.)      
(Section 6). 
 

3. T​UBE​ ​GUITAR​ ​AMPLIFIER​ ​DESIGN 

3.1. Overview 

A guitar amplifier is composed of different parts: usually, a          
preamplifier stage, a so-called "tonestack" stage that       
includes bass, midrange and treble controls, and a power         
stage (the Power Amp). See Figure 2 and 3 below.. 
 

 
Fig. 2.​ The typical stages of guitar amplifiers and their 
associated signal paths. Some brands (as Fender) may 

switch the PreAmp and the Tonestack stages. 
 

The preamplifier beefs up the high-impedance low-level       
signal coming from the guitar pickup microphones to a         
lower impedance mid voltage signal that can drive the         
power stage. The preamplifier also shapes the tone of the          
signal; high settings of the preamplifier lead to ‘overload’         
that creates crunch/distorted sounds. The power amplifier       
with the help of the output transformer outputs a very low           
impedance, high current signal adequate to efficiently drive        
a loudspeaker and to produce loud amplified sounds.        
Another clear aim of guitar amps is of course to create           
desirable distortions too. 
 

 
Fig. 3. ​The back of a Marshall JCM800 power head. We 

can see the two amplification stages. 
 
To get a finer understanding of this critical stage, we will           
further detail how a PowerAmp works, its role in the signal           
chain and why the power amplifier is so tricky to emulate           
due to the presence of some feedback loop in the circuitry. 
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3.2. The PowerAmp stage 

Usually solely controlled by the Master Volume and        
Presence knobs (Fig 4.), the Power Amp stage has a          
profound impact on the sound and overall dynamics.        
Indeed, the type of sound you can get from the preamp           
stage alone remains on the lean side in terms of distortions. 
 

 
Fig 4. ​The Power Amp stage is controlled by the Master 

Volume and Presence knobs. 
 
Referring to Kuehnel [7] and Denton [8], when you turn up           
the volume of a tube amp using the Master Volume knob,           
the power tubes get more and more distorted and the sound           
gets thicker and thicker, and also less controlled. And as          
you get closer to power saturation (i.e. clipping the power          
tubes and/or saturating the output transformer core causing        
the famous grinding effect, a mixture of       
saturation/oscillations, but also possibly starving the power       
supply - more about this later in this section), the output           
dynamics get tighter, resulting in muddy distortions with a         
heavier sound. The English slang to characterize these        
sounds is difficult to translate: in French, one would speak          
of "thick", "heavy", "metallic", "abrasive" (translation of       
gritty), "rich" sounds. 
 

 
Fig 5. ​For illustration, the Power Amp stage of a 
Mesa/Boogie 2:90. The Negative Feedback Loop 

(NFB)/Presence with its RC network is highlighted. The 
JCM 800 has similar topology. 

 

 

Fig 6. ​An abstraction of a classic Push/Pull Power Amp. 
 

In Power Amps, the Negative Feedback Loop       
(NFB)/Presence control (see Figs. 5 and 6) are typically         
introduced to extend the usable frequency bandwidth by        
limiting/reshaping the unwanted distortions originating     
from the non-linearities of the output transformer at the         
price of a slightly lower total gain. The negative feedback          
loop (NFB) takes a portion of the signal from the output           
transformer secondary winding, dephasing it with a 180        
degree phase shift and re-injects it back into the splitter          
stage (see the highlighted plot in Fig. 5 and the “Feedback”           
loop in Fig. 6). Amplifiers without NFBs are usually more          
powerful (higher gain) with more distortion, but their        
coloration also tends to become rougher and unpredictable        
when pushed into saturation. The NFB loop smoothes out         
the sound by reducing the level of distortion in the parts of            
the spectrum where it is most disturbing (typ. mid-range )          
[7]. 
Unknown to concert stage or HiFi power amps, a         
‘Presence’ control is added to the NFB loop of guitar amps           
to allow control on the coloration of the NFB and thus to            
provide a simple but efficient way of adjusting the         
brightness and sharpness of the sound at the Power Amp          
stage. The Presence may be looked at as a global          
time/frequency control on the brightness of timbre by        4

altering the signal fed back from the negative feedback         
loop. The effects of negative feedback can be reduced for          
certain frequencies as the Presence knob controls the        
resistor part of a RC network, hence a tunable filter made of            
Resistors and Capacitors (RC) in the loop. With less         
negative feedback in the high frequencies, the sound        
becomes brighter, louder, more vivid and dynamic. The        
behavior of this control is very different from those of the           
tonestack (bass, midrange, treble), which merely equalizes       
the output of the preamp. Namely, unlike conventional        
treble control which is mainly subtractive, Presence control        
is pseudo-additive in that it limits the fundamental        
subtractive aspect of the NFB loop. ​It should be noticed          
also that the NFB/Presence has a major influence at the          
temporal level [9] as the RC networks controlled by the          
Presence knob induce some frequency-dependent     
group-delay in the NFB loop. This may explain the         
blurring/sharpening effect that Presence has on the attack        
slopes of the notes played, acting as a        
“softening/anti-softening” pedal. This clearly motivates our      
introduction of a curve-based parametric Presence control       
to choose in which frequency band one wants its brightness. 
 
To design properly a NFB/Presence circuit, lots of        
parameters are involved and a lot of care must be taken           
when adjusting them. With real amplifiers’ power amps,        
manufacturers are very conservative: the allowed range of        
Presence control is restricted so as to avoid unwanted         
oscillations that may be destructive to the speaker/cabinet.        
As a consequence, only subtle alterations (mostly       
upper-mids/lower-high range brightness) are possible, the      
sound signature being mainly carved through the preamp        

4 ​Fender: Be in the Moment: The Presence Control Explained: What is it and              
how can it help energize your live sound? 
(​https://www.fender.com/articles/tech-talk/be-in-the-moment-the-presence-c
ontrol-explained​) 
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settings. In our simulations, the curve-based parametric       
Presence control allows us to fully carve the time/frequency         
coloration at the Power Amp level to add punch or special           
effects to the output from the Preamp and Tonestack.  
Some other important controls on the Power Amp are the          
Master volume to adapt gain with the Preamp output level,          
and the Bias setting of the tubes may be changed to           
introduce some light non-linearities/asymmetries in the tube       
response curves. In real-world tube Power Amps, Bias        
allows us to change the class of operation of the tubes (typ.            
class AB for push-pull) from almost class A to almost class           
B. And of course the Presence setting for adjusting the          
overall tone/brightness is quite important and can lead to         
destructive positive feedback if not designed correctly (freq        
ranges, etc.). Historically, some amps have a Power Amp         
section which is more important in their sound signature, in          
general they are the most "vintage" ones, think of the          
Fenders, the first Marshalls, the Vox AC30 … 
Improving the real-time dynamics in simulations is crucial        
to get them more realistic . Namely, when pushed to their          5

limits by large transients, classic guitar tube amplifiers (esp.         
with tube rectifiers based power supply) have a tendency         
towards harmonic saturation with typical dynamic range       
compression/expansion effects (known as ‘sag’ and      
‘bloom’), temporal lag (known as ‘squish’) or spatialisation        
artifacts (known as ‘swirl’) . Sag is consecutive to some         6

drooping of the supply voltage in the Preamp stage in          
response to large transients. The recovery from Sag as         
voltage supply returns to normal is coined as ‘Bloom’ and          
is again a well appreciated effect. Now, Squish is linked to           
some temporal hysteresis induced by some increased time        
lag in the feedback loop - also in response to large           
transients. Finally, Swirl is linked to saturation of the core          
in the output transformer from overload, leading to phase         
inconsistencies and spatial blurring of the chord played (ala         
Univox Uni-Vibe pedal effect). All those effects proved to         
be quite tricky to emulate in real-time .  7

 
We introduced a dedicated method to approximate these        
advanced temporal, nonlinear behaviours of tubes (typ.       
‘sag’/‘bloom’, ‘squish’/‘swirl’ effects). Namely, in the      
WebAudio API, the slope of the tube transfer function         
curves can be driven real-time by the power of input signal           
enveloppe emulating hysteresis phenomena. Consequently,     
to mimic this hysteresis and the sag in the response of a            
tube Preamp stage, we implemented it with simple        
dynamical real-time changes in the slopes of the transfer         
functions in our preamp simulation . By properly adjusting        8

the threshold at which we get the squish, only the higher           
power transients from the envelope amplitude will trigger        
controlled change of slope. This is still an experimental         
feature that needs to be properly adjusted and evaluated.         
Figure 7 shows a curve animated in real time with          
hysteresis behaviour in the transfer function triggered by        
the input signal envelope. 

5 Video: ​https://www.youtube.com/watch?v=zBhn7odezUQ 
6 ​More details on: ​http://www.aikenamps.com/index.php/what-is-sag 
7 ​Some examples at: ​http://www.diale.org/tube_emulation.html 
8 See this in our amp simulation in this video: 
https://www.youtube.com/watch?v=zBhn7odezUQ 

 

 
Fig 7. ​A tool we developed in order to adjust the real-time 
dynamics of the tube simulation based on waveshapers . 9

 
The Bias control corresponds to the idle voltage around         
which the tubes are amplifying signals and thus controls         
their linearity/asymmetry characteristics . With Bias, one      10

can change the amount of (negative) voltage offset applied         
to the signal at the grid of the tubes. Colder settings will            
make the pentodes/tetrodes draw less current, decreasing       
the overall output volume and potentially introducing       
cross-over distortion due to the class AB getting closer to          
class B (which may be what a guitarist looks after to           
achieve a more dirty/loose tone). Hotter settings will make         
the pentodes/tetrodes draw more current moving closer to        
class A, with a thicker, louder perceived output level and          
eventually up to power supply “sagging” (depending on the         
Sagging control setting), adding compression or, in extreme        
cases, saturation and cleaning up the tone from potential         
cross-over distortion.  
 

4 - I​MPLEMENTING​ ​THE​ P​OWER​ A​MP​ ​STAGE 
WITH​ W​EB​A​UDIO​ ​HIGH​ ​LEVEL​ ​NODES​, ​DEALING 

WITH​ ​LIMITATIONS 
In the current implementation, the presence filter is fully         
customizable and can be controlled in real time using a          
graphic equalizer (Fig. 8) to select the frequency range of          
the filter.  
The min and max values of the negative gain in the NFB            
can also be adjusted using a slider. These tools (NFB and           
Presence) are quite sensitive (at the edge of creating         
positive feedback with oscillations and Larsen effects so we         
provide controls in the GUI to adjust/restrict the admissible         
range) but this novel presence control provides an utterly         
powerful and spectacular tool to shape the final sound.  
Being able to adjust all the parameters (gains, filter         
parameters, transfer function of the waveshaper, etc.) is        
crucial to fine tune this stage using WebAudio nodes. We          
strongly advise the player to watch this YouTube video         11

which shows the differences in sound and dynamics with         
and without this loop (Power Amp on / off) in our           
simulation. 
 

9 ​https://jsbin.com/zotaver/edit 
10 Aiken - The last word on Biasing: 
https://www.aikenamps.com/the-last-word-on-biasing 
11 WebAudio implementation demo of the PowerAmp stage:        
https://www.youtube.com/watch?v=-NdMdJQx2Bw 
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Fig 8. ​The settings of the NFB power amplifier can be 
changed/adjusted dynamically on the fly, even while 

playing, without generating any audio glitches/dropouts. 
 
It sounds and plays very well (we made several user          
evaluations [1, 2] that showed that guitarists, even        
professional ones, liked the way the dynamics of a real amp           
was simulated). As said in previous sections, we simulate         
tubes using filters and waveshaper nodes with properly        
adjusted transfer functions. As shown in Fig 8. The green          
transfer function curve on the left of the graphic EQ          
(presence bank of filters) is rather linear, meaning that only          
little distortion is added to the signal, and only at high           
amplitudes. Being able to adjust this function is also crucial          
to avoid oscillations. On top of that, the Bias control has to            
be properly adapted to the selected tube transfer functions         
to guarantee coherent coloration/output volume (making it       
easier to compare different tubes and choose the right one).  
 
Nevertheless, we encountered many issues in the       
implementation of our signal loops in WebAudio. Proper        
simulations of NFB and Presence have been quite difficult         
to achieve due to some limitations of the WebAudio API          
and divergences/bugs in how browsers generally parse the        
WebAudio graphs with loops. In the WebAudio API specs,         
loops in the graph are required to include at least one delay            
node. Without this delay node, Firefox stops rendering the         
graph, while Chrome does not complain but adds, behind         
the scenes, a 3 ms delay (the minimal delay from a frame            
audio buffer of 128 sample-frames as within WebAudio        
API, the signal is always processed in packets of 128          
samples, which means that the minimum value for a delay          
is 128 / sample rate, i.e. about 128/44100 = 3ms). With the            
current limitations in WebAudio, and quite strangely, this        
3ms delay in the loop to conform to the specs, brings           
slightly different coloring of the amps between FF and         
Chrome. We have reported these errors and discussed them         
with the implementers (Raymond Toy from Google and        
Paul Adenot from Firefox) but so far, nothing has been          
fixed (September 2020). For a good implementation of        
NFB, a stable delay of fewer samples would have been          
preferable (higher delays increase latency and the softening        
of attacks). Now, to faithfully implement loops like the         
NFB with its RC networks inducing shorter delays, finer         
precision at the level of some sample-frames is required.  
To circumvent these limitations and allow a proper        
sample-wise accuracy in the processing of loops, we        
decided to re-implement the NFB loop (and other critical         
parts in general) in FAUST as AudioWorklets, ending up         
re-implementing all the processing nodes present in the        
circuit: filters, gain and wave shaper, in this language. 

5. FAUST ​IMPLEMENTATION​ ​OF  
THE​ P​OWER​ A​MP​ ​STAGE 

A guitar amplifier is composed of different parts: usually, a          
Preamplifier stage, a so-called "Tonestack" stage that       
includes bass, midrange and treble controls, and a Power         
stage (the Power Amp). Our general approach consisted in         
looking at the different parts we needed to re-create.         
However, as mentioned in the previous section, the        
poweramp stage is quite tricky to implement as it includes a           
negative feedback loop. In our initial purely WebAudio        
implementation [1, 2], we were using a bank of biquad          
filters in series (for the presence implementation), a        
waveshaper node with appropriate biquad filters (for       
simulating tubes), some gain nodes (master volume at the         
input of the stage, negative gain in the NFB loop and a few             
others for fine tuning the signal level at different locations          
in the audio graph), and a delay node (in the NFB loop).  
Aware of the great difficulties encountered in simulating        
the power amp in JavaScript/WebAudio, we first tried to         
re-create as faithfully as possible the signal chain that gave          
good results. For example, using the same types of filters          
with the same parameters, the same transfer function with         
the core issue of simulating properly a waveshaper in         
FAUST, the same gain values, etc. And of course, we          
looked closely at the behavior of the NFB loop whose delay           
hopefully should be lower than the 3ms barrier imposed by          
the previous implementation. 
This way, we can replace the current power amp         
implementation (made of a dozen of high level WebAudio         
nodes) with a single FAUST generated AudioWorklet node       

.  12

WebAudio comes with a set of classic biquad filters types:          
lowpass, highpass, bandpass, lowshelf, highshelf, peaking,      
notch and allpass. All these filters have a fixed set of           
parameters: frequency, gain, Q and detune, whereas some        
of these parameters are not relevant to some type of filters           
(as Q for lowshelf/highshelf). FAUST does not come with         
similar filters out of the box. After trying to adapt existing           
FAUST filters to behave like WebAudio filter ones, and         
after talking with FAUST and WebAudio implementers the        
conclusion was that for a really faithfull behavior, it would          
be better to start from the original C++ implementation of          
the WebAudio filter API, taken from the Chromium        
browser source code. The FAUST team did the port and          
provided us with the so-called webaudio.lib that is now         
available in the FAUST distribution. 
For the power amp tubes, we looked at the way FAUST           
developers simulated tubes (e.g. in the Guitarix project        13

source repository, in particular in the guitarix.lib file), or         
waveshapers (as in several distortion plugins such as the         
ones by Oleg Kapitonov or by Nick Thompson’s Creative         14

Intent Temper Distortion plugin ). We found out that most         15

tube simulations relied on C/C++ code and could not be          
used out of the box (typ. guitarix tube simulations), as we           

12 We already did that in the past by replacing the tonestack stage by some               
FAUST implementations [2]. 
13 ​http://guitarix.org/ 
14 ​https://github.com/olegkapitonov/Kapitonov-Plugins-Pack 
15 ​https://github.com/creativeintent/temper 
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must be able to run these in a Web browser, and the            
FAUST toolchain still does not support hybrid FAUST/C        
source code when the compilation target is set to         
WebAudio/WebAssembly. 

 
Fig. 9: ​FAUST transfer function, uses an approximation of 

tanh for computational improvements . 16

 

 
Fig. 10: ​Left, the transfer function for our JS 

implementation, Right, the one from the FAUST 
implementation  with k=1. 17

 
The Temper distortion simulation, however, used a 100%        
FAUST based implementation of a simple waveshaper that        
produced a warm, adjustable, distortion sound that could        
easily fit our needs. We used it as a starting point.           
Furthermore, the code contained the definition of a transfer         
function curve that could be adjusted (i.e using a more          
subtle/less aggressive curve). Fig. 9 shows the transfer        
function from the Temper Distortion waveshaper code, that        
is very close to the one we used in our JavaScript           
implementation (see Fig. 10. for comparisons), the       
parameter ​k​ driving the S shape of the curve.  
 
Figs. 11 and 12 show the final diagram of the FAUST           
implementation of the PowerAmp based on the Temper        
Distortion source code. Differences from the Temper       
Distortion source code are mainly the introduction of the         
Presence (made of two peaking filters, at 2kHz and 4kHz)          
in the feedback loop, the introduction of an adjustable         
negative feedback gain, the removing of some unnecessary        
elements (i.e. a resonant lowpass filter at the beginning of          
our signal chain). 

 
Fig. 11: ​Diagrams of the final implementation. 

16 See ​http://www.musicdsp.org/showone.php?id=238 
17 Check our online comparison tool: 
https://jsbin.com/qifexor/edit?js,console,output​, 

 
Fig. 12: ​The feedback circuit. The Presence filter is 

obtained using a set of peaking filters ported in FAUST 
from the WebAudio API implementation.  

 

 
Fig. 13: ​GUI generated by the FAUST IDE, some extra 

parameters (negative feedback gain, waveshaper; drive, 
curve, saturation) are tweakable, enabling fine tuning of 

the NFB loop. 
 

Finally we added GUI elements (knobs) in order to fine          
tune in real time different parameters (Fig. 13), in particular          
the ones that control the waveshaper (drive, curve,        
distorsion), the NFB gain and the Presence filters. 
The current implementation (mainly based on the code        
from the Temper Distortion) of the waveshaper does not         
rely on pre-calculated point tables, but on a transfer         
function applied to each sound sample, which leaves room         
for optimization. The dynamic time response of the tubes is          
approximated using an amplitude follower placed in the        
signal chain just before the waveshaper that drives an         
allpass filter (and which aims at modifying the DC offset,          
and thus the slope of the curve). ​We still have to evaluate            
whether this approach is as efficient or flexible as the          
method we used previously in the JavaScript       
implementation, which changes the slope but also the        
S-shape of the curve (see section 3, Fig. 7). 
 
Once our FAUST-based Power Amp re-creation was       
functional and adjustable, we could proceed to the        
evaluation phase. 
 

 
Fig. 14: ​For testing purposes, we created a WebAudio 

plugin from the FAUST code: using the WAP GUI Builder 
we developed, integrated in the FAUST IDE. 
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Fig. 15:​ The PowerAmp plugin  in our pedalboard 

application, with a version of our AmpSim in which we 
bypassed our Power Amp pure-JavaScript version and the 

cabinet simulator stages. 

6. E​VALUATION 
The first step of the evaluation was to listen to the global            
overall sound when we used the Power Amp in standalone          
mode, tweaking the different parameters (Master volume,       
Presence, negative gain, transfer function parameters), and       
to check its behavior compared to our previous        
WebAudio/JavaScript implementation. We did some trials      
using dry guitar sound samples, but also with a real guitar           
as inputs. The general feeling is that the two main settings,           
Master volume and Presence, reacted very closely with both         
implementations. In addition, the classic effects of       
oscillation and positive feedback could be obtained again        
when pushing some parameters close to the limit values         
(Presence, NFB gain). 
 
In a second step we used the FAUST IDE to create a            
WebAudio plugin from the FAUST implementation of the        
Power Amp (Fig. 14) and we chained a special version of           
our tube guitar amplifier simulations in which we bypassed         
the embedded power amp and cabinet simulation stages        
(Fig. 15), and compared with the full featured, JavaScript         
based simulations. Results can be seen/heard in a video we          
published online , or in the online pedalboard WebAudio        18

application .  19

 
The differences in terms of sound/timbre and playing        
dynamics are small and subtle. However, we noticed that         
the FAUST implementation was much more stable and        
versatile when adjusting the internal parameters of the        
feedback loop. The processing in our JavaScript       
implementation was based on blocks of 128 samples,        
inducing an undesirable delay of 3ms in the back-fed         
signal as opposed to only two samples with the FAUST          
loop . In the FAUST implementation, the measurement       20

tools (Fig. 16) proved the sample-wise nature of the         
processing with a delay of just one-sample for the         
NFB/Presence loop. This also explains the increased       21

stability of this loop. Now, in terms of aggregated latency          

18 https://youtu.be/uNp-0hzveeo 
19 ​https://mainline.i3s.unice.fr/Wasabi-Pedalboard/#​, check the PowerAmp 
tab at bottom, drag’n’drop in the main area. 
20 As measured in the FAUST IDE, using ​process = button("gate") 
<: ((poweramp), _);​ style code and the embedded visualization tools. 
21 As measured in the FAUST IDE, using ​process = button("gate")           

<: ((poweramp), _);​ style code and the embedded visualisation tools. 

for the Power Amp, we did measurements of the         
“end-to-end” latency, from guitar to cabinet and obtained        
consistently better values for latency with the new FAUST         
implementation: around 20-21 ms compared to the 23-24        
ms latency of our previous finely-tuned JavaScript       
implementation (both using a Firefox Nightly 75.0a1       
browser with an external Focusrite Scarlett and a Macbook         
Pro 16 under 10.14). This confirms a saving of 3ms in           
accordance with the difference of processing of loops        
between FAUST (sample-wise) and WebAudio     
API/JavaScript (block based).  
 

 
Fig. 16: The latency can be measured achieving        
sample-wise accuracy using the tools embedded in the IDE.         
Yellow: a gate signal, Pink: the output from the PowerAmp.          
X-axis is in samples. 

In addition, the use of the FAUST IDE for coding,          
debugging and profiling this Power Amp plugin has been         
evaluated by six audio plugin developers with different        
levels of expertise with the FAUST language. They had to          
follow a tutorial that guided them and after that, they had to            
answer a detailed survey. The IDE has been considered as          
“very useful” for prototyping rapidly an audio plugin, prior         
to polishing its GUI by hand, editing the HTML/CSS code.          
Details of this evaluation are available in [13]. 

7. P​ERSPECTIVES​ ​AND​ ​CONCLUSIONS 
FAUST has proven to be particularly suitable for porting         
the JavaScript code of an existing Power Amp in a very           
similar way, freeing it from the limitations, inconsistencies        
and constraints of the WebAudio API. We performed        
preliminary qualitative measurements and measured the      
latency of the processing, which proved to be almost         
identical. We did not investigate some aspects that can still          
be improved/optimized, such as the implementation of a        
full-featured waveshaper in FAUST (based on      
pre-calculated tables and interpolation to describe the       
transfer function, for example), or on more complex tube         
models. At the evaluation level, additional systematic       
measurements have to be made and the power amp         
behavior should also be compared with native       
implementations, for example, those of the TPA-1 by Ignit         
Amps plugins, or the TSE X50 by TSE audio (in which           22 23

the poweramp stage can be isolated). 
 

22 ​http://www.igniteamps.com/#tpa-1 
23 ​https://www.tseaudio.com/software/x50v2 
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