
Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, May 14-15, 2020

METASURFACE64

Dominique Blanchemain ∗

Documentation : http://blanchemain.info/Documents/Programmation/index.php?page=metaSurface
https://github.com/dblanchemain/metaSurface

Document translation(EN): Mary Waller
Plouguerneau, France

dblanchemain@free.fr

ABSTRACT

metaSurface64 (Figure 2) is a control surface for performing con-
tinuous real time sound transformations in a window using a mouse.
It has its own loop generator, up to 64 voices, and a multi-effect
FX engine. It is software developed in C ++ for Linux. It can be
compiled for windows with Msys2.

"A tiling or tessellation of a flat surface is the covering of a
plane using one or more geometric shapes, called tiles, with no
overlaps and no gaps (Wikipedia)." In this document, we will use
the terms tiling to designate the flat surface and pad for geometric
shape.

Each pad on the surface allows direct control of the gain of
the audio output with a slider here called a mixer. This mixer also
allows you to control the parameters of pad attached plugins.

Figure 1: Mixer.

It is also possible to control the tracks and plugins of an exter-
nal sequencer (Ardour1 or Reaper2). To do this, the application
uses modules controllable by OSC which come from the Faust
language library which is embedded. It is also possible to have an
external mono audio input for a pad.

You can write new plugins in the Faust language and integrate
them into the surface. New controllers for external plugins incor-
porated in your DAW (digital audio workstation) can be added to
extend the possibilities.

Finally, you can create new tiling for your surface.
Pads audio files can be multi-channel. The Jack audio output

of each pad can be set independently and can be single or multi-
channel.

This document is not a manual but a simple presentation of the
software. I can’t ignore the interface description. This is essential
to correctly perceive the number of parameters transmitted to the
DSP generator.

The documentation is available here:
∗ This work was supported by S.Letz
1https://ardour.org/
2https://www.reaper.fm/

http://blanchemain.info/Documents/Programmation
/index.php?page=metaSurface

1. INTRODUCTION

Creating audio objects for electroacoustic composition is a time-
consuming and complicated process.

The tools and plugins integrated into the sequencers allow you
to work on samples in real time, but the management of the plugins
interfaces is often not adapted to the simultaneous manipulation of
multiple parameters.

Audio file editors, Audacity for example, don’t work in real-
time and don’t allow continuous adaptation of the settings accord-
ing to what is heard. In all cases, it is not possible to simultane-
ously alter the settings for several plugins.

AudioMulch3 was the first application to offer a metasurface
which allowed the modification of several plugins settings at a time
simply by moving the mouse. This tool became particularly rele-
vant for creating music.

Figure 2: metaSurface64.

By taking the concept of AudioMulch and combining it with
the idea of a Midi multi-pad like the Novation Lauchpad(Figure 3)
or the LinnStrument, i.e. a trigger surface for playing audio files,
I came to design this software metaSurface64 (Figure 2) with
a limit of 64 audios channels which corresponds, among other
things, to the limit of the number of audio channels of Reaper.

The fact that you can integrate your own tiling into the meta-
Surface64 gives the application a lot of flexibility.

3http://www.audiomulch.com/

IFC-1

http://blanchemain.info/Documents/Programmation/index.php?page=metaSurface
https://github.com/dblanchemain/metaSurface
mailto:dblanchemain@free.fr

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, May 14-15, 2020

Figure 3: Example Midi Pad.

2. PRESENTATION

Most multi pads take the form of a group of rectangular buttons
which are used to start Midi events, along with settings buttons.
metaSurface64 consist of a window with a tiling and a variable
number of pads with a management interface.

Clicking on a pad creates a mixer and starts looping an audio
file or audio input. The volume is determined by the distance from
the center of the pad. Moving the mixer (Figure 1) adjusts the
volume in real time as a function of this distance.

Figure 4: Pad.

An ordered list of plugins can be associated with each pad.
Their parameters can be modified statically by the interface or dy-
namically if one associates them with moving the pad’s mixer.(Figure 4)

When the surface is activated by clicking on the speaker but-
ton, libfaust allows the generation of a DSP and its interface GTK.
Each tab represents a pad.

It is possible to obtain an interface for multichannel audio out-
puts if the multichannel option has been selected (Figure 11).

2.1. Pad

Each pad has an interface with specific parameters. Without going
into detail, it is possible to specify an audio file for the automatic
loop engin integrated in the surface. This loop is activated by the
DSP creation if a mixer is defined for the pad. Audio files can be
mono or multi-channel.

The playback can be multi-channel if this option has been cho-
sen.

Figure 5: Design.

If no file has been selected, there is a mono entry visible in
Jack(Figure 6).

It is possible to move the plugin management on to the se-
quencer by selecting the DAW option. It will be necessary to de-
fine the track associated with the pad in the sequencer.

Faust obviously does not intervene directly in the real-time
management of sequencers’ plugins, but he does allows the cre-
ation of new ones. On the other hand, it is possible to control them
with the metaSurface64.

Figure 6: Pad interface.

By default, moving the mixer affects the gain of the output. It
is possible to change this option by deselecting it. Dynamically
modifiable plugins will always be modified by the mixer.

This is also where we define a chain of effects.

IFC-2

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, May 14-15, 2020

3. PLUGINS

3.1. Generality

Width Faust, I have made 12 plugins which are integrated in Mé-
tasurface64: Compression, Delay, Distortion, Flanger, Freeverb,
Granulator, HPF/LPF, Mixer, MoogVCF, parametricEQ, Phaser,
RingModulator(Figure 7).

The associated DSP files allow generation of LV2 or VST, with
for example the Faust IDE, to use them in the sequencers.

I propose versions in mono and 8 channels(vst for Reaper).
Ardour duplicates the plugins according to how many chan-

nels are in the track. Reaper doesn’t offer this functionality and its
management of multi-channel tracks is problematic for controlling
parameters with metaSurface64. It is recommended to generate
adapted plugins from the DSP files proposed.

Figure 7: Effects selection.

If the option DAW is selected for a pad, the plugins used in the
sequencer can be controlled from metaSurface64. Their order in
the surface and the sequencer must be rigorously respected for this
to work.

The configuration of the dynamically modifiable parameters is
done by clicking on the icon which can be found immediately on
the right of each plugin. The structure of the windows for defining
the parameter limits is the same for all the plugins(Figure 8).

A parameter must be validated for it to be taken into account.
It is possible to define the variation interval of a parameter. We can
also specify a variation coefficient to accelerate or slow down the
modification with the movement of the mixer.

3.2. Add a plugin

metaSurface64 allows the creation and integration of new plugins
written in Faust language by editing a DSP file with either an
editor like Emacs or using Grame’s FaustIde[1]. The latter also

Figure 8: Example limits table.

allows exportation of plugins in LV2 and/or VST format. This
possibility increases the potential to experiment while working on
researching new sounds.

For exemple, to create a new plugin: by editing this code from

Figure 9: Add plugin.

R.Michon:

import("stdfaust.lib");
import("music.lib");
mu = library("music.lib");
myFbComb=ba.bypass1(combp,myComb)
with{

comb_group(x)=vgroup("Comb Filter", x);
combp=comb_group(vgroup("[0]",checkbox("

Bypass [tooltip: When this is checked,
Comb Filter has no effect]")));

myComb=comb_group(hgroup("[1]",+~(mu.
delay(2048,delLength)*(-a1))));
a1 = vslider("a1",0,-1,0.999,0.001)

: si.smooth(0.999);
delLength = slider("delLength

",1,1,2000,1);
};

and saving it in the folder

$HOME/metaSurface/Plugins

with the name feedbackCombFilter.lib, this new plugin will appear
in your plugins list.

By adding this line:

process = _:myFbComb:_;

IFC-3

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, May 14-15, 2020

you can generate the LV2 and VST which will be available for
your sequencer. Then, it will be necessary to define the modifiable
parameters with their limits, like for the other plugins, to be able
to control them dynamically from the metaSurface64.

It’s also from this window that you can define the controllers
of the external plugins used in your DAW (for example the Calf-
plugins for Ardour).

4. CONCLUSION

The metaSurface64 is a surface destined for the creation of com-
plex audio objects. It offers a realtime environment to facilitate
research with independant chains of effects for each audio chan-
nel. I hope it will be useful for creators and will give them new
perspectives.

The code is not perfect, but it should get better quickly.
The next improvement will bring a better interface for inte-

grating new plugins.
By elsewhere, it will be necessary to develop a Debian pack-

age to make installation easier on Linux.

5. ACKNOWLEDGMENTS

Many thanks to S.Letz for his patience and support!

6. REFERENCES

[1] Stephane Letz, “Online faust ide,” in Faust programming
language, GRAME, France, May 2020.

[2] Ross Bencina, “Audiomulch metasurface,” Melbourne, Aus-
tralia, May 2016.

[3] Julius O. Smith, “Signal processing libraries for Faust,” in
Proceedings of Linux Audio Conference (LAC-12), Stanford,
USA, May 2012.

[4] Yann Orlarey, “Version librairie du compilateur faust,” in HAL
Id: hal-00965271, GRAME, France, Mars 2014.

[5] Yann Orlarey Stéphane Letz, Dominique Fober, “Comment
embarquer le compilateur faust dans vos applications ?,” in
JIM, GRAME, France, Mars 2013.

[6] Romain Michon and Julius O. Smith, “Faust-STK: a set of
linear and nonlinear physical models for the Faust program-
ming language,” in Proceedings of the 14th International
Conference on Digital Audio Effects (DAFx-11), Paris, France,
September 2011.

7. APPENDIX: EXEMPLE INTERFACE DSP

Example interface for a surface with 16 pads:
Here is an example interface for managing plugins for a tiling

in multi-channel mode(Figure 11). Sorry, a better resolution is not
possible due to the size of the window.

8. APPENDIX: EXEMPLE DSP READ FILE

DSP generator in C++ for simple playback of an audio file

Figure 10: Interface GTK for a surface.

void metaSurface::testFileDSP(string st1){
SF_INFO sfinfo;
string sFileName=tabPave[selectPad-1].

getPath()+"/"+tabPave[selectPad-1].
getFile();

const char *path=sFileName.c_str();

SNDFILE* sndfile=sf_open(path, SFM_READ,
&sfinfo) ;

sf_close(sndfile) ;

string nameFile="simplePlayer.dsp";
if(sfinfo.channels>1){
string prog;
prog=prog+"import(\"stdfaust.lib\");";
prog=prog+"import(\"soundfiles.lib\");";
prog=prog+"ds=soundfile(\"[url:{\’"+path

+"\’}]\","+to_string(sfinfo.channels)
+");";

prog=prog+"vmeter(x)= attach(x, envelop(x
) : vbargraph(\"[2][unit:dB]\", -70,
+5));";

prog=prog+"envelop = abs : max ~ -(1.0/ma
.SR) : max(ba.db2linear(-70)) : ba.
linear2db;";

prog=prog+"sample1 = so.sound(ds, 0);";
prog=prog+"gain = vslider(\"[0]gain

\",0.1,0,2,0.01) : si.smoo;";
prog=prog+"gate = button(\"[1]gate\");";
prog=prog+"gdec(x) = hgroup(\"Player\",x)

;";
prog=prog+"tdec(x) = gdec(vgroup(\"[1]\",

x));";
prog=prog+"lect(x) = gdec(hgroup(\"[2]\",

x));";
prog=prog+"lgain=tdec(gain);";
prog=prog+"lgate=tdec(gate);";
prog=prog+"lmet=lect(par(j,"+to_string(

sfinfo.channels)+",hgroup(\"c%2j\",
vmeter)));";

IFC-4

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, May 14-15, 2020

Figure 11: Dsp multi-channel

prog=prog+"smp1 = display_progress(
sample1.play_progress(lgain,lgate)):
lmet;";

prog=prog+"process = smp1;";
createDSP(prog, st1);
}

}

9. APPENDIX: EXEMPLE DSP CREATE

(In a string for DSP Factory)
Pad 0 audio file(stereo) with 1 plugin: Delay
Pad 1 audio file(stereo) with 1 plugin: flangerMono
Pad 2 to 15: input (mono link by Jack)

import("./faust/stdfaust.lib");
import("./faust/soundfiles.lib");
import("./faust/metaSurfaceFaust.lib");
ds=soundfile("[url:{’../Musique/Ardour/

workInProgress/export/b_Audio 4-2.14ps1.
wav’;’../Musique/Ardour/workInProgress/
export/b_Audio 4-2.14ps2.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’;’./
metaSurface4/sound/vide.wav’}]",2);

vmeter(i,x)= attach(x, envelop(x) :
vbargraph("%2i[unit:dB]", -70, +5));

envelop = abs : max ~ -(1.0/ma.SR) : max(ba
.db2linear(-70)) : ba.linear2db;

sample(x) = so.sound(ds, x);
sgain(i) = vslider("[0]gain%2i

",0.1,0,2,0.01) : si.smoo;

ingain(i) = vslider("[0]gain%2i
",0.1,0,2,0.01) : si.smoo;

sspeed(i)=vslider("[1]speed%2i
",1.0,0,2,0.01) : si.smoo;

lect2(x)=hgroup("Player",x);
tdec(x)=lect2(hgroup("[0]Param",x));
lect(x)=lect2(hgroup("[1]Meter",x));
lgain(i)=tdec(sgain(i));
lspeed(i)=tdec(sspeed(i));
lmet=lect(par(j,2,vmeter(j)));
base=tgroup("Pad",hgroup("p00",hgroup

("[0]",sample(0).loop_speed_level(lspeed
(0),lgain(0)):lmet:par(j,2,hgroup("[0]",
delay))):>_),

hgroup("p01",hgroup("[0]",sample(1).
loop_speed_level(lspeed(1),lgain(1)):
lmet:par(j,2,hgroup("[0]",flangerMono)))
:>_),

hgroup("p02",hgroup("[0]",_:*(ingain(2))<:
lmet):>_),

hgroup("p03",hgroup("[0]",_:*(ingain(3))<:
lmet):>_),

hgroup("p04",hgroup("[0]",_:*(ingain(4))<:
lmet):>_),

hgroup("p05",hgroup("[0]",_:*(ingain(5))<:
lmet):>_),

hgroup("p06",hgroup("[0]",_:*(ingain(6))<:
lmet):>_),

hgroup("p07",hgroup("[0]",_:*(ingain(7))<:
lmet):>_),

hgroup("p08",hgroup("[0]",_:*(ingain(8))<:
lmet):>_),

hgroup("p09",hgroup("[0]",_:*(ingain(9))<:
lmet):>_),

hgroup("p10",hgroup("[0]",_:*(ingain(10))<:
lmet):>_),

hgroup("p11",hgroup("[0]",_:*(ingain(11))<:
lmet):>_),

hgroup("p12",hgroup("[0]",_:*(ingain(12))<:
lmet):>_),

hgroup("p13",hgroup("[0]",_:*(ingain(13))<:
lmet):>_),

hgroup("p14",hgroup("[0]",_:*(ingain(14))<:
lmet):>_),

IFC-5

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, May 14-15, 2020

hgroup("p15",hgroup("[0]",_:*(ingain(15))<:
lmet):>_));

smp1=vgroup("[0]",base);
process = smp1;

10. APPENDIX: CODE DSP FACTORY

localDsp is a string which corresponds to code DSP and st1 allows
to specify if the option OSC is desired. The file .Padplayer puts
in the user’s directory saves the parameters for a subsequent use
when the GTK window is closed.

void metaSurface::createDSP(std::string
localDsp, string st1){

char name[256];
char nameAudio[256];
char rcfilename[256];
char* home = getenv("HOME");
string s = "padPlayer.dsp";
char filename[s.length() + 1];
strcpy(filename, s.c_str());
snprintf(name, 255, "%s","Padplayer");
snprintf(rcfilename, 255, "%s/.%s-rc",

home, name);

bool is_osc;
if(st1=="-osc"){
is_osc = 1;

}else{
is_osc = 0;

}

dsp_factory* factory = nullptr;
dsp* DSP = nullptr;
MidiUI* midiinterface = nullptr;
jackaudio_midi audio;
GUI* oscinterface = nullptr;
string error_msg;

cout << "Libfaust version : " <<
getCLibFaustVersion () << endl;

factory = createDSPFactoryFromString(
filename,localDsp, 0,NULL, "",
error_msg, -1);

if (!factory) {
cerr << "Cannot create factory : " <<

error_msg;
exit(EXIT_FAILURE);

}
std::cout << "Factory : " << factory<<

std::endl;
cout << "getCompileOptions " << factory->

getCompileOptions() << endl;

DSP = factory->createDSPInstance();
if (!DSP) {

cerr << "Cannot create instance "<<
endl;

exit(EXIT_FAILURE);
}

GUI* interface = new GTKUI(filename,0,
NULL);

DSP->buildUserInterface(interface);
FUI* finterface = new FUI();
DSP->buildUserInterface(finterface);
SoundUI* soundinterface = new SoundUI();
DSP->buildUserInterface(soundinterface);

if (is_osc) {
int argc1=5;
char* argv1[64];
argv1[0]=filename;
argv1[1]=(char*)"-xmit";
argv1[2]=(char*)"0";
//cout <<argv1[0]<<argv1[1] << " : "

<< argv1[2]<< endl;
argv1[3]=(char*)"-port";
string s=to_string(ref->getOSC());
argv1[4]=(char*)s.c_str();//"5540"
cout << "osc " << argv1[4] << endl;

oscinterface = new OSCUI(filename,argc1
,argv1);

DSP->buildUserInterface(oscinterface);
}

if (!audio.init(basename(filename), DSP))
{

cout << "audio.init : " << 0<< endl;
}
finterface->recallState(rcfilename);
audio.start();

if (is_osc) {
oscinterface->run();

}

interface->run();

audio.stop();

finterface->saveState(rcfilename);

delete DSP;
delete interface;
delete finterface;
delete oscinterface;
delete soundinterface;

deleteDSPFactory(static_cast<
llvm_dsp_factory*>(factory));

}

IFC-6

	1 Introduction
	2 Presentation
	2.1 Pad

	3 Plugins
	3.1 Generality
	3.2 Add a plugin

	4 Conclusion
	5 Acknowledgments
	6 References
	7 Appendix: Exemple interface DSP
	8 Appendix: Exemple DSP read file
	9 Appendix: Exemple DSP create
	10 Appendix: code DSP Factory

