
Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France,
May 14–15, 2020

CROSS-PLATFORM UI FOR FAUST-BASED AUDIO APPLICATIONS USING FLUTTER

Andrei Ozornin

Individual
Amsterdam, Netherlands
andrey@ozorn.in

ABSTRACT

In this project, I explore possibilities of integrating Faust
with Flutter, a modern UI framework capable of delivering
applications for web, mobile and desktop platforms.

Also, I propose a development methodology allowing the
DSP layer written entirely in Faust to be completely independent
from the user-facing interface.

As a proof-of-concept, I present a working production-ready
iOS application made using Faust and Flutter and a minimal
reproducible open-source example. Also I describe a workflow of
creating applications using this technology stack, including
mobile and desktop as well as web applications.

1. INTRODUCTION

1.1. Problem statement

Faust is a great tool for DSP, but its possibilities of
describing user interfaces are very limited. It’s not a weakness of
Faust, it is so by design, as Faust is a domain-specific language,
dedicated to signal processing, whereas user interfaces are more
commonly represented as state machines with a user-facing view
layer.

When it comes to creation of totally custom UI components,
existing UI primitives in Faust may not fit. Solution like
faust2smartkeyboard [1] is good for prototyping and trying out
ideas related to sound, but when it comes to customisation of the
appearance and trying out controller-related ideas changing user
experience, it lacks flexibility, because these actions would
require modifying the tool itself, as would using a different scale
than one of the predefined.

There are architectures generating UI using third-party
libraries [2]: among others, GTK and Qt, but all of them generate
UI based on metadata from Faust code. To perform changes in
the UI generated by one of these tools, you would have to change
code in DSP files.

These approaches don’t fit the principle of single
responsibility which is widely spread in object-oriented
development.

1.2. Proposed technical solution

There is target faust2api [3], which outputs UI-independent
DSP layer with platform-independent API and therefore can be
used in combination with practically any tool, language and
framework that is interoperable with C++. Using it, DSP
developers can safely change implementation of sound engine
and it won’t affect UI, and UI developers can abstract themselves
away from sound engine implementation details.

Moreover, this way UI can be implemented using any
technology or even programming language, and changing the
technology won’t affect the DSP layer in any way. Also, several
different user interfaces can be used with the same signal
processor within the same project, as well as the DSP
implementation can be easily mocked for testing purposes.

1.3. Proposed methodology

From a methodological point of view, to make it happen, the
DSP code in any given project shouldn’t have any references to
the appearance of the controls. It only provides a set of named or
numbered (depending on agreement within a team) parameters
with zero information on their visual representation. Even
differentiation between hslider and vslider becomes redundant,
just as do metadata values like [style:knob] or
[unit:db].

Grouping parameters into semantically meaningful categories
is a right thing to do but the group hierarchy should stay
independent from UI implementation. Differentiation between
tgroup, hgroup and vgroup becomes redundant as well.

Metadata in general stays allowed, as long as it describes
characteristics of the sound parameter. Any metadata describing
the role or appearance of the UI control changing or displaying
the parameter value, is restricted.

I propose to call this style of Faust coding “UI-agnostic”.

2. IMPLEMENTATION

There are plenty of technologies empowering development of
cross-platform interfaces. Some of them have already been more
or less integrated with Faust: most notably, GTK+, Qt and Unity.

I’ve chosen Flutter among them because it can produce
mobile (stable), web (beta, as of August 2020), and desktop

IFC-1

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France,
May 14–15, 2020

(alpha) applications [4] and comes with rich infrastructure,
including package manager, widget library and various IDE
tools. It’s been maintained by Google and, unlike Unity and Qt,

is free to use even in proprietary commercial projects regardless
of amounts of profit (see table 1). Above all, Flutter is extremely
well documented and is being frequently updated.

Table 1: Comparison of UI frameworks.

Framework Win Mac Linux Android iOS Web Open-Source Free for commercial use
GTK Yes Yes Yes No No No Yes Yes
Qt Yes Yes Yes Yes Yes No Yes Limited [5]

Unity Yes Yes Yes Yes Yes Yes No Limited [6]
Flutter Yes* Yes* Yes* Yes Yes Yes Yes Yes

* available in alpha channel

2.1. User interface

Basic Flutter app can be created in just one CLI command,
given that all necessary dependencies are installed:

flutter create app-name

The created app can then be started in debug mode either on

real device or in simulation with another command

flutter run

The interface itself can be built of blocks implementing

Material design or using low-level API. All changes made in
code immediately become visible in the running application,
thanks to “Hot reloading” built in Flutter.

Flutter applications are written in Dart: it’s a high-level
object-oriented language with a strong type system. Dart since its
origin has been designed with UI development as its main
purpose, so in certain sense Dart can be called a domain-specific
language dedicated to user interfaces.

Further description as well as multiple tutorials can be found
on the official site of Flutter: flutter.dev.

For purposes of proof-of-concept, we add a simple gate
button in main.dart file:

Widget build(BuildContext context) {

 return Center(

 child: const RaisedButton(

 onPressed: null,

 child: Text(

 'Start beeping',

 style: TextStyle(fontSize: 20)

),

)

)

}

For now this button does nothing, but that will change at the

end of chapter 2.3.

2.2. DSP

For demonstration purposes we create an oscillator:

import("stdfaust.lib");

gate = button("gate") : si.smoo;

process = os.sawtooth(440) * gate;

From this Faust code then we generate platform-specific C++

files for all necessary platforms. For instance, to generate DSP
layer for iOS, we run this command:

faust2api -ios -nozip -target

../ios/Runner/DSP main.dsp

The idea is to put the generated C++ files to the folder where

the code can be included and then used in application. XCode
projects can’t include files from outside the project directory, so
we create a folder called DSP inside the iOS project and put the
generated C++ files together with the generated README file
there.

2.3. DSP / UI interoperability

To call API methods of the DSP layer, the UI layer has to
communicate with platform-level code written in C++. Dart has
this capability, but requires some tweaking. Out of the box it
allows communication with platform-specific code in languages
native for the platform (Objective C and Swift on iOS or Java
and Kotlin on Android) [7].

Such communication happens via platform channels:
platform-independent Dart code sends a message to a channel,
the underlying layer written in native language receives it and
sends it further to platform-specific C++, which in its turn,
performs required calls to platform API (for example, to
CoreAudio).

Sample Dart method calling setParamValue method on
platform channel:

import 'package:flutter/services.dart';

class DspApi {

 static const _platform = const

MethodChannel('channel_name');

 static Future<void> setParamValue(int id,

double value) {

return

_platform.invokeMethod('setParamValue',

<String, dynamic>{

 'id': id,

 'value': value,

});

 }

}

IFC-2

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France,
May 14–15, 2020

Sample Objective C method receiving the call above and
calling corresponding method of the platform-specific DSP C++
implementation (must be placed inside AppDelegate class
implementation of the XCode project):

[synthControlChannel

setMethodCallHandler:^(FlutterMethodCall*

call, FlutterResult result) {

 if ([@"setParamValue"

isEqualToString:call.method]) {

 NSNumber* idArg =

call.arguments[@"id"];

 NSNumber* valueArg =

call.arguments[@"value"];

 [weakSelf setParamById:idArg.intValue

Value:valueArg.floatValue];

 result(nil);

 }

}

to call this method, we also add onPressed action handler

to the button we’ve created in p. 2.1:

onPressed: () => DspApi.setParamValue(0, 1)

2.4. Implementation summary

A generic Faust-Flutter project has the following structure
(see Figure 1):

UI-agnostic DSP code written entirely in Faust is used to
generate platform-specific C++ files which are then included in
the project build.

Cross-platform UI code written entirely in Dart calls native
methods via MethodChannel technology coming with Flutter.

Native code receives calls from MethodChannel and
performs corresponding calls to the C++ code generated from
Faust. Then it sends the response back to the UI layer.

Figure 1: Structure of a generic Faust-Flutter project

Developed this way, a cross-platform user interface can be
implemented using the technology that is best applicable for UI
production, and stay independent from both platform code and
high-level DSP code.

On the other hand, DSP chains can be developed with the
tool that is created specifically for signal processing staying
completely independent from UI implementation.

2.5. Working examples

Minimal working Flutter-Faust open-source project
practically identical to the code in this article can be found in
faust_flutter repository on GitHub [8].

More sophisticated sound application called Synt is also
created using both Faust DSP and Flutter UI, but is not
open-source so far. However, it can be tried out and used in
AppStore [9] and act as a demonstration of possibilities of this
technology stack.

2.6. Other platforms

Android, MacOS, Windows and Linux [4] applications can
be created by analogy: faust2api generates platform-specific DSP
modules from the same Faust codebase and Flutter generates a
user interface for that platform from the same Dart codebase.
Dart code communicates with native code via MethodChannel
the same way it does on iOS.

Web application is going to be a bit trickier, but still the same
approach applies. Instead of faust2api, another Faust target has to
be used: faust2webaudio or faust2webaudiowasm. And the Dart
code should communicate with it the same way it did on other
platforms.

3. CONCLUSIONS

Faust is a powerful tool for DSP, but often lacks flexibility
when it comes to UI. There already were several attempts to fix it
or to have a workaround: some of them even have become part of
the language, while others evolved as architecture files. One can
get very interesting results using them, but these implementations
tend to look hacky because description of UI is not the main
purpose Faust was designed for.

Thanks to the existence of faust2api [3], the user interface
implementation can be completely delegated to other
technologies, leaving DSP code UI-agnostic.

User interface can be implemented using any technology best
suitable for the job. In this article, I’ve shown an example with
Flutter, which is Google’s UI toolkit for building beautiful,
natively compiled applications for mobile, web, and desktop
from a single codebase.

This approach allows splitting areas of responsibility between
developers, effectively separating DSP implementation from UI,
giving more freedom in implementation of both.

Also, it enables building sophisticated cross-platform user
interfaces, expanding boundaries of what was possible using
existing Faust architectures.

4. REFERENCES

[1] Romain Michon, Julius O. Smith, Chris Chafe, Ge Wang,
and Matthew Wright, faust2smartkeyb: a tool to make

IFC-3

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, Saint-Denis, France,
May 14–15, 2020

mobile instruments focusing on skills transfer in the Faust
programming language, in Proceedings of the 1st
International Faust Conference (IFC-18), Mainz, Germany,
July 17–18, 2018.

[2] D. Fober, Y. Orlarey and S. Letz, Faust Architectures
Design and OSC Support, chapter 4. GUI Architecture files
in Proceedings of the 11th Int. Conference on Digital Audio
Effects (DAFx-11), Paris, France.

[3] R. Michon, J. Smith, S. Letz, C. Chafe and Y. Orlarey,
“faust2api: a Comprehensive API Generator for Android
and iOS” in Proceedings of the Linux Audio Conference
(LAC-17), Saint-Etienne, France, 2017.

[4] Desktop support for Flutter, https://flutter.dev/desktop,
August 30, 2020.

[5] Legal | Licencing - Qt, https://www.qt.io/licensing/, August
31, 2020.

[6] Compare Unity Plans: Pro vs Plus vs Free,
https://store.unity.com/compare-plans, August 31, 2020.

[7] Writing custom platform-specific code,
https://flutter.dev/docs/development/platform-integration/pl
atform-channels, August 31, 2020.

[8] oshibka404/faust_flutter: Minimal audio application with
Flutter UI and Faust DSP,
https://github.com/oshibka404/faust_flutter, August 31,
2020

[9] Synt | An instrument you can play even if you think you
can’t, https://synt.ozorn.in/, August 31, 2020

IFC-4

