
Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

CREATIVE USE OF BIT-STREAM DSP IN FAUST

Till Bovermann ∗

Universität für Angewandte Kunst Wien
Project Rotting Sounds

Vienna, Austria
till@rottingsounds.org

Dario Sanfilippo

Independent researcher
sanfilippo.dario@gmail.com

ABSTRACT
Although digital data are adorned by the myth of lossless transmis-
sion and migration, everyday experience does prove the existence
of degradation and, ultimately, data loss in various forms. As it
turns out, 1-bit-based information representation for audio is of
particular interest in terms of digital deterioration research. We
therefore introduce BITDSP as a set of FAUST library functions to
explore and research artistic possibilities of bit-based algorithms
with FAUST. After introducing and discussing three data formats
to handle 1-bit data streams, concrete implementations of bit-based
functions ranging from simple bit operations over classic delta-
sigma modulations to more experimental approaches like cellular
automata, recursive Boolean networks, and linear feedback shift
registers are introduced. In a third part, creative applications util-
ising the described library are presented.

1. INTRODUCTION

Although a widespread assumption is that forms digital represen-
tation are absolute and perfect in both their storage and repro-
duction, everyday observation shows that degradation and decay
does indeed happen on all of the many levels of digital data han-
dling. In the artistic research project "Rotting sounds – Embrac-
ing the temporal deterioration of digital audio", we therefore ex-
plore artistic opportunities arising from obsolescence, degradation
and information loss in digitally represented sound [1]. Com-
pared to the gradual and graceful degradation and eventual dis-
integration of analogue sound generation and reproduction appli-
ances, common digital tools such as PCM or MP3-based represen-
tations tend to exhibit an abrupt breach into fail and thus silence
or noise. 1-bit-based information representations for audio are an
exception to this and are thus of particular interest in terms of our
digital deterioration research: In difference to pulse-code modula-
tion (PCM) streams in which a bit can have one of several mean-
ings (e.g. in an integer-based PCM representation it can denote a
1, 2, 4, 8, 16, . . .), only determined by its position in the serial bit-
stream, a bit in a 1-bit stream always carries one and the same kind
of information. In delta-sigma modulation (see below), this would
be e.g. whether the signal increases (true) or decreases (false) at
that specific point in time. In this case, deterioration in the time
domain, i.e. as jitter (e.g. by an off-by-one error in interpretation
of the bit, a common error in signal reconstruction) does not have
any considerable effect on the resulting perceived sound, and bit
rot, the sporadic misinterpretation of the value of a bit (also re-
ferred to as bit-flip), alters signal information in a linear fashion,
independent to the actual position of the misinterpreted bit in the
stream.

∗ This research has been funded by the Austrian Science Fund (FWF)
as project AR 445-G24.

1.1. Bit-stream DSP

In BITDSP, we differentiate between basic bit-based operators with
no context other than the previous state, delta-sigma modulation
(DSM), and approaches that generate, respectively operate on par-
allel streams of bits. Examples for such operators are for exam-
ple shift registers or certain kinds of cellular automata (CA). As
in other DSP environments, bit-stream operators (independent of
the previous differentiation) may roughly be categorised into gen-
erators, filters and converters. The latter are operators that are
intended to be used to translate semantic information (e.g. that de-
noting a waveform) from one representation (e.g. PCM) to another
(e.g. 1-bit audio).

Delta-sigma modulation (DSM) is an analogue-to-digital en-
coding technique in the 1-bit domain with a non-linear quanti-
sation noise distribution. The elementary DSM design consists
of integrating the quantisation error —the difference between the
output of the modulator and the input signal— and subsequently
processing the result through a comparator to output a maximum
or minimum value [2, 3].

The negative feedback loop in DSM acts as a noise-shaping
transfer function that pushes the quantisation noise towards the
upper region of the spectrum. The order of DSM systems is deter-
mined by the number of integrators in the network, and the transfer
function, with regard to the order K of a modulator, is given by
(1 − z−1)K [4]. Hence, oversampling becomes very effective in
order to move the quantisation noise away from the audible range,
although high oversampling ratios are required for low-order DSM
designs for adequate signal-to-noise ratios. On the other hand,
first-order and second-order DSM guarantee stability for a wide
range of input signals, whereas high-order DSM may result in un-
stable behaviours. Digital low-pass filters can remove the quanti-
sation noise from the ultrasonic range, and downsampling can then
be performed to operate at standard sampling frequencies [4].

Digital DSM can be deployed to convert multi-bit signals into
1-bit ones. For the inverse, the conversion between one-bit streams
to multi-bit ones is simply carried out by averaging the pulses in
the one-bit stream, which can be achieved effectively through low-
pass filtering. Specifically, the cut-off frequency of the low-pass
filter determines the range of the baseband, whereas the bit resolu-
tion of the coefficients of the filter determines the bit-depth of the
resulting multi-bit signal [2].

The conversion to the one-bit domain opens to new possibil-
ities for audio DSP. DSM audio signals can be combined or pro-
cessed through one-bit algorithms for generating complex patterns
both at timbral and formal time scales. Some of these algorithms
include CA and recursive boolean networks (RBN), examples of
which will be discussed later.

IFC-1

http://rottingsounds.org
mailto:till@rottingsounds.org
https://dariosanfilippo.tumblr.com/
mailto:sanfilippo.dario@gmail.com

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

2. FORMS OF BIT-BASED SYNTHESIS TECHNIQUES
AND THEIR IMPLEMENTATION

Figure 1: Unfolding a dsp function with two feedback paths for
oversampling (here N = 3) by parallel processing.

During our explorations of bit-stream synthesis, we collected
various functions and ideas related to bit-based synthesis tech-
niques. We decided to develop and implement them in FAUST
because of its stream-oriented functional approach [5, 6]. All cur-
rently implemented functions are available for public use under
the MIT License in a repository1 of FAUST library files. We sub-
sequently present selected functions and, where applicable, ex-
plain implementation details. Before diving into the functionality
itself, though, we introduce three data structures: integer-based,
bitBus<N>, and int32, that we deemed interesting for 1-bit
sound synthesis and that we therefore used in our implementations.
While the first technique is a straight-forward representation based
on standard FAUST operators and signal flow, the latter incorporate
oversampling and bit-wise operation techniques which require re-
definition and unfolding of feedback paths. Overcoming this chal-
lenge, however, results in a more optimised implementation that
allows for most of the time necessary oversampling and compact
representation of data structures.

integer-based A straight-forward implementation in which each
1-bit sample is represented as an integer value that is ei-
ther a ∈ {0, 1} (unipolar), or a ∈ {−1, 1} (bipolar). This
representation allows to implement bit-based operators util-
ising standard FAUST operators. For real-time applications,
sample rates are, however, limited to the maximum sample-
rate supported by the audio interface. Another limiting fac-
tor is that each 1-bit value is represented by (typically) 32
bits, hence computational and memory allocation is far big-
ger than necessary.

bitBus<N> (parallel processing of parallel bit-streams) The bit-
stream is represented by an N -dimensional signal bus of N
consecutive samples of the bit-stream in N parallel streams
(see Figure 1). This results in an oversampling relative to
the sample-rate by a factor of N . This approach requires
unfolding of feedback paths over the N signal buses, which
means that standard implementation of the FAUST libraries
utilising feedback operators cannot be integrated. Instead,
specific versions need to be written. The up-sampling factor
is denoted by N in bitBus<N>.

int32 (parallel processing of a compact bit representation) The
bit-stream is encoded in a FAUST-native integer signal as a
sequence of bits that need to be processed in parallel. As of
writing this paper, an integer in FAUST typically translates

1https://github.com/rottingsounds/bitDSP-faust, accessed on
31.8.2020.

into a 32bit signed integer. Implementations in int32 are
therefore equivalent to bitBus<32>. The resulting up-
sampling factor is therefore N = 32).

Generally, an implementation for each of the three data struc-
tures follows a similar form. As an example for concrete imple-
mentations, we provide a block diagram for an implementation
strategy for oversampling by parallel processing in Figure 1.

2.1. Conversion

2.1.1. Delta-sigma modulators

Figure 2: Block diagram of the 1st order Delta-sigma modulator
as implemented for the straight-forward integer-based data format.
s0 and s1 denote the feedback paths that need unfolding for an
implementation in bitBus<N> resp. int32 (cf. Figure 4).

A pre-requisite for many 1-bit-based synthesizers and filters
are functions to convert pulse-code modulation (PCM), the com-
mon digital audio representation format [7] also used by FAUST,
into a 1-bit form. For the described library, we chose implementa-
tions of the naive first-order delta-sigma modulator based on two
feedback paths (dsm1, see Figure 2) and of another feedback-
based modulator, this one a second-order model (dsm2, see Fig-
ure 3). The first-order delta-sigma modulator is so far implemented
in the straight-forward integer-based data format and in bitBus<N>
which can be converted into the more specific form of int32 (see
Figure 4).

x

x
- integrator

2
*

- integrator Q

process

Figure 3: Block diagram of the 2nd order Delta-sigma modula-
tor as implemented for the straight-forward integer-based data for-
mat..

2.1.2. BitDAC

For parallel bit-streams we found it interesting to be able to in-
terpret (part of) them as integer-based PCM values. We therefore
implemented bitDAC. It allows to select a range of parallel bits
in a bit-stream and interpret them as part of an integer PCM value.
Currently there is an implementation for the int32 format:2

2Since the native integer data-type in FAUST is signed and right-shift
operations on signed integers are dependant on used C(++)-compiler, a
ffunction primitive had to be implemented that casts the integer into
unsigned int before the right-shift operation. Left shift was defined
similarly to assure consistent readability.

IFC-2

https://github.com/rottingsounds/bitDSP-faust

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

Figure 4: Block diagram of the 1st order dsm for (a)
bitBus<32> and (b) int32.

bitDAC(offset, size, in) = normed(
// shift selection to right-most bits
right_shift((in & bitmask), offset)

) with {
// maximum value that fits into size
maxval = left_shift(1,size)-1;
// select area of which to create PCM values
bitmask = left_shift(maxval, offset);
// normalise values to be between 0 and 1
normed(out) = out / (maxval-1);

};

As with most FAUST definitions, bitDAC’s parameters can
be modulated at audio-rate which can result in interesting sonic
behaviour. For now, we used bitDAC mostly for sonifications of
the below-described LFSR implementations.

2.1.3. Conversion between 1-bit data formats

For now, conversion from naive integer-based format to the other
formats is done via sample-and-hold. This means for the conver-
sion to bitBus<N> to set all parallel buses at a given time to the
same value as the input state. The conversion to int32 is defined
as:

bit_to_int32(0) = 0; // unimodal
bit_to_int32(-1) = 0; // bimodal
// -1 is encoded by all 32 bits
// in high state
bit_to_int32(1) = -1;

For future investigations, dithered upsampling routines are planned
to be implemented.

Similarly naive implementations were defined for conversion
between bitBus<(> N) and int32:

bitBus_to_int32 = bitBus2int(32);
bitBus_to_int(N) =
si.bus(N) : sum(i, N, _ << i);

int32_to_bitBus(N) = _ <: si.bus(N) :
par(i, N, ((1 << i) & _) != 0);

2.2. Operators

We differentiate between basic bit-wise operators, series operators,
parallel operators and a combination of the latter.

2.2.1. Bit-wise operators

Since FAUST provides primitives for the bit-wise operations and,
or, and xor, we used those to implement bit-wise operators for
all three data structures. For int32, bitwise not needed to be de-
fined using the ffunction directive since FAUST does not cur-
rently provide a primitive for it.3

2.2.2. Bit rot and jitter

Bit-related degradation of the bit-stream is implemented by bitRot
which, under a specified likelihood and depending on its type pa-
rameter, either sets a bit’s value to false (-1), true (1), or reverses
it (0).

bitrot(noise, chance, type) = _ <: select3(
type-1,
low(noise, chance, _),
flip(noise, chance, _),
high(noise, chance, _)

) with {
low(noise, chance, x) =

select2(coin(noise, chance), x, 0);
high(noise, chance, x) =

select2(coin(noise, chance), x, 1);
flip(noise, chance, x) =

select2(coin(noise, chance), x, 1-x);
coin(noise, chance) =

noise < chance;
};

An essential operation for delta-sigma-based filters is a de-
lay. While the implementation for the simple data format and
bitBus<N> are straight-forward, the implementation for int32
required more attention:

delay(delta, x) = delay32(
(delta % 32), x@((delta, 32) : div)

) with {
delay32(0, x) = x;
delay32(delta, x) = (
right_shift(x, delta) |
left_shift(x’, (32-delta))

);
};

2.2.3. Recursive Boolean networks

Recursive Boolean Networks (RBNs) are systems inspired by Kauff-
man’s models of gene regulatory systems, which he implemented
as networks of nodes representing genes and Boolean operators
applied to vertices representing rules of regulatory interactions [8].
Due to the non-linear properties of some Boolean functions, Boolean
networks with recursive configurations can be used for the gener-
ation of streams with chaotic behaviours ranging from attractors
to periodic oscillations and unpredictable behaviours [9]. In this
project, RBNs are mainly used as complex oscillators where fre-
quency content and dynamical behaviours are entangled and driven
by the periods of the feedback loops. Below, we can see two ex-
amples of oscillators that transition through different dynamical
behaviours upon variation of the feedback periods in the networks.
The first example is a second-order network, containing two nodes,
whereas the second example is a fourth-order network, with four

3This and other FAUST-related limitations unfortunately mean that
some functions of the BITDSP library are currently only available in the
C-based interface of FAUST.

IFC-3

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

nodes. The first network has a fully-connected topology, whereas
the second one is a combination of identity and circular topologies.
An important aspect that deserves consideration is the asymmetry
in the behaviour of such oscillators in a time-variant configura-
tion. Specifically, any identical configuration of the parameters,
provided that these vary over time, results in different behaviours
at different times as the system is determined by both its output
and state variable [10, 11].

bool_osc1(del1, del2) = node2
letrec {
’node1 =

not(node1 xor node2 & node1)
@ max(0, min(ma.SR, del1));

’node2 =
not(node2 xor node1 xor node2)
@ max(0, min(ma.SR, del2));

} with {
not(x) = rint(1 - x);

};

bool_osc0(del1, del2, del3, del4) = node1
letrec {

’node1 = not(node1 & node2) @ max(0,
min(ma.SR, del1));

’node2 = not(node2 | node3) @ max(0,
min(ma.SR, del2));

’node3 = not(node3 xor node4) @ max(0,
min(ma.SR, del3));

’node4 = not(node4 & node1) @ max(0,
min(ma.SR, del4));

}
with {

not(x) = rint(1 - x);
};

2.2.4. Masked block-based operators

Block-based operators assume a certain amount of surrounding
bits to be their context of operation. This makes sense especially
in bitBus<N> and int32 form, since here, N (32) bits are pro-
cessed in parallel and are thus available for the operator. One
sonically and functionally interesting operator to implement is ap-
plying a bit-wise operation only to specific bits within the block
(e.g. via a bit-mask). As an reference for other bit-wise operators,
the following is an implementation for a masked or in the int32
form.

maskedOr(mask, a, b) = applyMask(a|b, a, mask)
with {
applyMask(res, org, mask) =

(mask & res) |
(bitNot(mask) & orig);

};

A bit mask in int32 form can be created by providing the indices
of bits to be set to the following function:

bit_mask((n, ns)) =
bit_mask(ns) | left_shift(1, n);

bit_mask(n) = left_shift(1, n);

Defining b = bit_mask((1, 3)); will then create the inte-
ger 10 with bits 1 and 3 set.

2.2.5. Linear feedback shift registers

Linear feedback shift registers (LFSRs) are in widespread use for
hardware-based indexing, and counting applications in which speed

and efficiency are important and the order of execution or indexing
can be neglected. Possibly because of the easy availability of shift-
registers as integrated circuits and the well-understood theory be-
hind LFSRs, several sound-synthesis-related hardware implemen-
tations of feedback- and shift-register-based filters, sequencers,
and oscillators have been developed, most prominently in the Run-
gler circuit by Rob Hordijk and Grant Richter’s “noise ring”[12].

LFSRs can be described in the so-called “Fibonacci form”4,
i.e. by a binary polynome that determines which bit indices (here
called taps) of the register are combined to determine the new input
bit:

N∑
i

ci ∗ xi

with N the size of the register, c = {ci|i = 1..N, ci ∈ {0, 1}}
the mask determining which taps have an influence on the register
output, xi the i-th tap, and

∑
the parity (iterative XOR) operator.

Depending on the selection of c, the output sequence of a shift
register of size N can have a period of up to 2N − 1 [13].

The following code implements an LFSR on a 32bit-wide shift
register.

lfsr32(mask, in) = step(mask, in) ~ _
with {

step(mask, in, fbIn) =
selector(in, fbIn) <:
(parity(_ & mask), left_shift(_, 1)) : |;

selector(a, b) =
select2(changed(a), b, a);

changed(x) = x != x’;
};

Since periodicity of LFSRs depend a lot on the length of the
underlying shift register [14], we also implemented a variable-
length LFSR with a register length of up to 32 bits.

lfsr(n, mask, in) = step(n, mask, in) ~ _
with {

masked_out(n, val) =
right_shift(-1, 32-n) & val;

step(n, mask, in, fbIn) =
selector(in, fbIn) <: (

parity(_ & mask),
masked_out(n, left_shift(_, 1))

) : |;
selector(a, b) =
select2(changed(a), b, a);

changed(x) = x != x’;
};

To optimise performance, we utilised a parity implementation by
Anderson implemented as a ffunction primitive [15].

2.2.6. Bit-based 1-dimensional cellular automata

Complex networks can be analysed based on static structural prop-
erties such as clustering, hubs, and degree distribution to find im-
plications between these properties and how we can explore and
investigate such networks. One aspect that is crucial in understand-
ing complex networks are their dynamical behaviour and how they
perform tasks. Melanie Mitchell extends the notion of network dy-
namics to include information processing performed by networks,
and considers one main challenge to understand how such infor-
mation is processed and propagated [16].

4There are also other forms of description but within this paper we limit
ourselves to “Fibonacci”.

IFC-4

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

For information propagation to be modelled and understood, it
is necessary to consider how nodes and links behave locally in the
processing and propagation of information, and how nodes, links,
and network structures change over time in response to these be-
haviours. Complex networks such as the brain and the immune
system are e.g. characterised by mainly having local connections
and centralised control. Such networks have been described ac-
cording to information processing notions, although the under-
standing of how such networks perform complex computations
still remains limited [16].

Regular networks such as cellular arrays have been proposed
as architectures for molecular computation and distributed infor-
mation processing [17]. Cellular automata are one of the simplest
forms of regular networks and have been investigated thoroughly
by Wolfram in the wider exploration of complex systems [18].

The type of cellular automata deployed in our artistic project
are 2-state (binary), 1-dimensional elementary cellular automata
based on circular lattices. The state of each cell is determined by
its state and the state of its two neighbouring cells. The output of
the lattice is iteratively fed back into itself to determine the new
states.

Since we have three cells and two states, there are 23 = 8
cases to which a specific rule is applied to determine the out-
come. Since there are eight cases and two possible outcomes for
each case, there are a total of 28 = 256 possible rules that de-
termine the behaviour of an elementary CA. These rules can be
encoded as positive integers between 0 and 255, called Wolfram
Numbers. The number is converted into a binary string of eight
digits –appropriately zero-padded or clipped if necessary– repre-
senting the outcome for the eight possible cases.

Below we can see the FAUST code for the implementation of
an elementary CA (see Appendix A.1). The parameters L, R, I,
and rate, respectively, are the length, rule, initial condition, and
iteration rate of the CA.

3. APPLICATION

As mentioned in Section 1, the motivation behind the BITDSP li-
brary is to artistically research properties of rotting and decay on
bit-based audio representations. Applications of the presented fea-
tures are therefore primarily involved with the aesthetics of rotting
in terms of bit deterioration through operations otherwise deemed
inadequate for such material. Since we are still at the start of the
investigations, only one example is described below, however, we
are planning to extent the research and are also considering the
library to be the basis for upcoming workshops on digital rotting.

3.1. “Merge and dissolve”

For the “SOUND CAMPUS” of Kunstuniversität Linz at Ars Elec-
tronica Festival 2020, Till Bovermann performed with tools based
on the BITDSP library together with Thomas Grill (sound), and
Kathrin Hunze (visuals). The performance entitled “merge and
dissolve” took place in September 2020 at a venue in Linz and was
transmitted into the Metaverse, a virtual multi-client environment
equipped with visual projection possibilities as well as a virtual
multi-speaker setup. Metaverse was developed by the host organi-
sation specifically for “SOUND CAMPUS”.5

5https://ausstellungen.ufg.at/wildstate/project/sound-campus-merge-
and-dissolve/, accessed on 2.9.2020.

As mentioned in Section 1, the working group rotting sounds,
under which the performance took place, has been investigating
1-bit audio as a medium in which deterioration may take place. In
this performance we focused on the aspect of this format that the
electrical bit-stream can simply be played over a normal ampli-
fier/loudspeaker combination yielding the analog sound equivalent
of the sonic information embedded in the bit-stream. Both PCM-
based audio processing strategies as well as strategies introduced
above were integrated into a signal-network between the perform-
ers, giving rise to rather unexpected sound qualities.

Figure 5: Overview of Till Bovermann’s performance system for
"merge and dissolve".

While the overall setup of the performance was highly net-
worked and tools of the individual performers were independently
developed in various forms of hardware and software6, Till’s per-
formance system relied on a SuperCollider7-based performance
setup that utilised custom-built UGens written in FAUST and the
BITDSP library. Several incoming PCM streams and bit-streams
were to be converted respectively processed. As a conceptual (and
possibly also practical) decision, we agreed to play at a sample rate
of 192kHz, allowing to use standard audio hard- and software and
residing in the somewhat fuzzy inter-mediate between common
PCM-based sample rates and “proper” DSD sample rates. Inter-
action with the system was handled via a monome grid 128 con-
troller.8 While the lower 8 by 8 matrix of buttons of the controller
was used as a switchboard to route the eight incoming signals to
the respective outputs, the upper 8 by 8 matrix of buttoned served
as switches to (de-)activate signal effectors. A schematic overview
of the performance system is given in Figure 5. Since the perfor-
mance was based around the idea to pick up each other’s streams,
manipulate and amplify them into an 8-channel system, the cus-

6more details on the performance can be found at
http://rottingsounds.org.

7http://supercollider.github.io, accessed on 31.8.2020.
8https://monome.org/docs/grid/, accessed on 31.8.2020.

IFC-5

https://ausstellungen.ufg.at/wildstate/project/sound-campus-merge-and-dissolve/
https://ausstellungen.ufg.at/wildstate/project/sound-campus-merge-and-dissolve/
http://rottingsounds.org
http://supercollider.github.io
https://monome.org/docs/grid/

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

tom UGens based on BITDSP were kept rather simplistic in their
implementation: The modularity of the system and thus the com-
bination of modules rather than complex effecting was meant to
induce sonically interesting results. Parts of the performance setup
are published in a git repository.9

Figure 6: Effect bus of one channel in Till Bovermann’s perfor-
mance system for "merge and dissolve".

4. CONCLUSION

We presented our work and thoughts on the creative use of bit-
stream DSP in FAUST. Although we are still at the beginning
of our research, we are happy to say that FAUST and its commu-
nity turned out to be a welcoming environment for implementation
of and discussion about a broad spectrum of bit-based operations.
Unfortunately, however, since implementations of many of the de-
scribed functions depend highly on a specific bit-representation
of integers (in our case the unsigned, fixed width integer type
uint_32t), the lack of such an unsigned integer type and, gener-
ally, the lack of data types with a defined bit-length10 renders some
implementations in native FAUST code impossible. In crucial sit-
uations we had to rely on the use of the ffunction primitive
to include external C headers. We would be very grateful to have
standard types according to the C++11 standard to be considered
to be included in future releases of FAUST.

Apart from a growing repertoire of applications and perfor-
mances, workshops around rotting sounds with BITDSP are sched-
uled and an installation involving CAs and dynamic oscillators
is planned, we are looking forward to include more bit-stream-
related functionality into the library. We especially plan to im-
plement respectively port further applications and variations of
LFSR [19], e.g. the feedback-with-carry shift register [20]. Higher-
order DSM implementations for bitBus<N> and int32 are also
planned as well as implementations of functionality spanning the
different data formats.

Eventually, we intend to offer a library that facilitates bit-
stream DSP for use in FAUST development with a particular focus
on distortion and deterioration processes. The starting points im-
plemented so far are performant and powerful due to core function-
ality provided through the FAUST language, toolchain and, most
importantly its growing community. We are therefore grateful for
feedback on the existing implementations and on possible further
directions.

9https://github.com/rottingsounds/mergeDissolve/, accessed on
31.8.2020.

10As of writing this paper, FAUST renders its output code with compiler-
specific types int, float, double instead of C++11 conform types.

5. REFERENCES

[1] T. Grill, T. Bovermann, and A. Schilling, “Embracing the
temporal deterioration of digital audio: A manifesto,” in Pro-
ceedings of Politics of the machine, 2018, submitted.

[2] R. Schreier and G. C. et al. Temes, Understanding delta-
sigma data converters, vol. 74, IEEE press Piscataway, NJ,
2005.

[3] J. D. Reiss, “Understanding sigma-delta modulation: the
solved and unsolved issues,” Journal of the Audio Engineer-
ing Society, vol. 56, no. 1/2, pp. 49–64, 2008.

[4] U. Zölzer, Digital audio signal processing, vol. 9, Wiley
Online Library, 2008.

[5] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and seman-
tical aspects of faust,” Soft Computing, vol. 8, no. 9, pp.
623–632, 2004.

[6] Y. Orlarey, D. Fober, and S. Letz, “Faust: an efficient func-
tional approach to dsp programming,” NEW COMPUTA-
TIONAL PARADIGMS FOR COMPUTER MUSIC, vol. Edi-
tions DELATOUR FRANCE, pp. pp.65–96, 2009.

[7] K. W. Cattermole, “Pulse code modulation: invented for mi-
crowaves, used everywhere,” in Proceedings of the 1995
International Conference on 100 Years of Radio, 1995, pp.
184–186.

[8] Stuart A Kauffman, “Metabolic stability and epigenesis in
randomly constructed genetic nets,” Journal of theoretical
biology, vol. 22, no. 3, pp. 437–467, 1969.

[9] James Gleick, Chaos: Making a new science, Open Road
Media, 2011.

[10] Dario Sanfilippo and Andrea Valle, “Feedback systems: An
analytical framework,” Computer Music Journal, vol. 37, no.
2, pp. 12–27, 2013.

[11] Dario Sanfilippo, Complex musical behaviours via time-
variant audio feedback networks and distributed adaptation:
a study of autopoietic infrastructures for real-time perfor-
mance systems, Ph.D. thesis, University of Edinburgh, 2020.

[12] “Noisering analysis by babaluma,” http://mamonu.
weebly.com/wiard-noisering.html, accessed
31.8.2020.

[13] A. Klein, Linear Feedback Shift Registers, pp. 17–58,
Springer London, London, 2013.

[14] M. George and P. Alfke, “Linear feedback shift registers in
virtex devices,” Xilinx apprication note XAPP210, 2007.

[15] S. E. Anderson, “bithacks,” 2002, https:
//graphics.stanford.edu/~seander/
bithacks.html#ParityParallel, accessed
31.08.2020.

[16] M. Mitchell, “Complex systems: Network thinking,” Artifi-
cial Intelligence, vol. 170, no. 18, pp. 1194–1212, 2006.

[17] S. Xiao, F. Liu, A. E. Rosen, J. F. Hainfeld, N. C. See-
man, K. Musier-Forsyth, and R. A. Kiehl, “Selfassembly
of metallic nanoparticle arrays by dna scaffolding,” Journal
of Nanoparticle Research, vol. 4, no. 4, pp. 313–317, 2002.

[18] S. Wolfram, A new kind of science, vol. 5, Wolfram media
Champaign, IL, 2002.

IFC-6

https://github.com/rottingsounds/mergeDissolve/
http://mamonu.weebly.com/wiard-noisering.html
http://mamonu.weebly.com/wiard-noisering.html
https://graphics.stanford.edu/~seander/bithacks.html#ParityParallel
https://graphics.stanford.edu/~seander/bithacks.html#ParityParallel
https://graphics.stanford.edu/~seander/bithacks.html#ParityParallel

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

[19] T. Clutterbuck, T. Mudd, and D. Sanfilippo, “A practical and
theoretical introduction to chaotic musical systems,” .

[20] M. Goresky and A. M. Klapper, “Fibonacci and galois rep-
resentations of feedback-with-carry shift registers,” IEEE
Transactions on Information Theory, vol. 48, no. 11, pp.
2826–2836, 2002.

A. APPENDIX

A.1. Elementary cellular automata listing

The parameters L, R, I, and rate, respectively, are the length,
rule, initial condition, and iteration rate of the CA.

eca(L, R, I, rate) = (si.bus(L) , init(I) :
ro.interleave(L, 2) :
par(i, L, +) : iterate :
par(i, L, ba.sAndH(trigger))) ~ si.bus(L)

with {
trigger =

ba.period(ma.SR / max(ma.EPSILON, rate))
== 0;

wrap(M, N) = int(ma.frac(N / M) * M);
w_num = zeropad_up(

int(8 - ceil(ma.log2(R1))),
bitConv.dec2bitBus(R1)

) with {
R1 = min(255, R);

};
init(N) = zeropad_up(

int(L - (floor(ma.log2(N1)) + 1)),
bitConv.dec2bitBus(N1)

) : par(i, L, _ <: _ - mem)
with {

N1 = min(N, 2 ^ L - 1);
};
rule(x1, x2, x3) = ba.if(

c1, w_num : route(8, 1, 1, 1), ba.if(
c2, w_num : route(8, 1, 2, 1), ba.if(
c3, w_num : route(8, 1, 3, 1), ba.if(
c4, w_num : route(8, 1, 4, 1), ba.if(
c5, w_num : route(8, 1, 5, 1), ba.if(
c6, w_num : route(8, 1, 6, 1), ba.if(
c7, w_num : route(8, 1, 7, 1),
w_num : route(8, 1, 8, 1)

))))))
) with {

c1 = (x1==1) & (x2==1) & (x3==1);
c2 = (x1==1) & (x2==1) & (x3==0);
c3 = (x1==1) & (x2==0) & (x3==1);
c4 = (x1==1) & (x2==0) & (x3==0);
c5 = (x1==0) & (x2==1) & (x3==1);
c6 = (x1==0) & (x2==1) & (x3==0);
c7 = (x1==0) & (x2==0) & (x3==1);
c8 = (x1==0) & (x2==0) & (x3==0);

};
iterate = si.bus(L) <: par(

i, L,
route(L, 3,

wrap(L, i - 1) + 1, 1, i + 1, 2,
wrap(L, i + 1) + 1, 3

) : int(rule)
);

};

IFC-7

	 Introduction
	 Bit-stream DSP

	 Forms of bit-based synthesis techniques and their implementation
	 Conversion
	 Delta-sigma modulators
	 BitDAC
	 Conversion between 1-bit data formats

	 Operators
	 Bit-wise operators
	 Bit rot and jitter
	 Recursive Boolean networks
	 Masked block-based operators
	 Linear feedback shift registers
	 Bit-based 1-dimensional cellular automata

	 Application
	 ``Merge and dissolve''

	 Conclusion
	 References
	 Appendix
	 Elementary cellular automata listing

