
Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

THE EDGE OF CHAOS LIBRARY: A LARGE SET OF FAUST FUNCTIONS FOR THE
IMPLEMENTATION OF MUSIC COMPLEX ADAPTIVE SYSTEMS

Dario Sanfilippo

Independent researcher
sanfilippo.dario@gmail.com

ABSTRACT

This paper presents the Edge of Chaos library, a set of Faust
functions dedicated to the implementation of music complex adap-
tive systems through time-variant audio feedback networks. The
paper first describes the background and the motivations behind
the library, then it discusses the library modules and some of the
most relevant functions. The library includes eight modules for
information processing, sound processing and generation, stabil-
ity processing for self-oscillating designs, and mapping strategies.
Lastly, the paper discusses future work for the library to transform
it into a music complex adaptive systems generator software for
live performance. The library is available on Github1 and it is pub-
lished under the GNU GPL v2.0 license 2.

1. BACKGROUND

The early studies on complexity are from at least the 1970s with
Edgar Morin and V. Rao Vemuri [1, 2], but several others were
researching the same field from different directions. For example,
Prigogine was investigating dissipative structures, non-equilibrium
thermodynamics, and the function of time in biological systems
[3]; the theories on autopoiesis by Maturana and Varela [4]; Kauff-
man and his work on random Boolean networks showing the emer-
gent evolution of their self-organisation [5]; the research on arti-
ficial life by Langton [6]. In the 1970s, John H. Holland imple-
mented a computational model of adaptation in evolutionary sys-
tems inspired by the work of Rosenblatt [7]. Holland published his
early research on genetic algorithms in 1975 [8], and he was a dis-
tinguished researcher in the field of adaptation. [9]. Holland also
became part of the Santa Fe Institute3 in 1985, a place where some
of the most prominent complex adaptive systems (CASes) thinkers
like Melanie Mitchell and James Crutchfield currently work.

CASes are now used in several fields, and they have gained
substantial importance during the years. Some of their applica-
tions are used to predict and understand complex real-world phe-
nomena through computational models for economic trends or the
development of technological progress [10, 11]; the evolution of
intelligence [12]; or global behaviours in societies [13]. CASes
are also applied in the implementation of artificially intelligent sys-
tems like self-repairing software and intelligent anti-virus systems
[14]; or robotics and linguistics [15, 16].

Today, Alice Eldridge and Agostino Di Scipio have provided
some of the most important contributions in the creative music
practice with adaptive systems [17, 18, 19, 20]. Other works based

1https://github.com/dariosanfilippo/edgeofchaos
2https://www.gnu.org/licenses/old-licenses/

gpl-2.0.en.html
3https://www.santafe.edu/about. Accessed on the 29th of

August 2019.

on feedback and cybernetics are discussed in [21]. The author,
too, has investigated music complex adaptive systems extensively
in his research [22, 23, 24], as well as in collaboration with Di
Scipio [25, 26].

Edge of Chaos is a FAUST library dedicated to the implemen-
tation of music complex adaptive systems and is the result of the
author’s 15-year-long research on feedback systems and complex
adaptive systems for the generation of music through recursive and
time-variant audio networks, particularly following an agent-based
modelling approach [27]. The library comprises a large set of func-
tions ranging from standard DSP techniques to original algorithms.
These include functions for the extraction of low-level and high-
level information, the processing and generation of audio streams
through dynamical systems, linear and nonlinear mapping strate-
gies to couple information and sound, as well as energy-preserving
functions to guarantee stability in self-oscillating systems. Con-
sidering the intrinsic time-variant nature of complex adaptive sys-
tems, FAUST was an optimal choice for the implementation of the
library due to its stream-oriented paradigm.

2. MODULES IN THE EDGE OF CHAOS LIBRARY

After a quick introduction on the artistic importance of feedback
and adaptation in music, we can now present the content of this
project. The library consists of a total of ten modules, eight of
which are the fundamental ones containing DSP functions, and
the remaining ones provide access to the functions environments.
The modules are the following:

• allEOC.lib
• auxiliaryEOC.lib
• delaysEOC.lib
• edgeofchaos.lib
• filtersEOC.lib
• informationEOC.lib
• mathsEOC.lib
• oscillatorsEOC.lib
• outformationEOC.lib
• stabilityEOC.lib

2.1. AllEOC.lib and edgeofchaos.lib

AllEOC.lib and edgeofchaos.lib are access modules. This first one
imports all of the remaining modules by means of the import
function. The second one is equivalent to FAUST’s stdfaust.lib

and provides access to the remaining modules through a series of
environments by means of the library function.

IFC-1

http://dariosanfilippo.com
mailto:sanfilippo.dario@gmail.com
https://github.com/dariosanfilippo/edgeofchaos
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.santafe.edu/about

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

2.2. AuxiliaryEOC.lib

AuxiliaryEOC.lib is a small module that contains the functions
dirac, step, and inspect. The first two functions are the
Dirac delta function and the step function, whereas the last func-
tion gives a visual representation of the values of signals, updated
at block-size rate. This module is mostly used for testing and de-
bugging and its environment prefix is "au".

2.3. DelaysEOC.lib

The delaysEOC.lib module is essentially the same set of delay
lines that we can find in FAUST’s standard library, except the de-
lay parameter here is set in seconds rather than in samples for a
samplerate-independent set of delays. The environment prefix for
this module is "d2".

2.4. FiltersEOC.lib

The filtersEOC.lib module is dedicated to filters of different kinds.
It includes the biquadratic filters designed by Robert Bristow-Johnson
as well as some of the filters in [28, 29]. The module also includes
a set of integrators, adaptive crossovers, and an excellent analytic
filter designed by Olli Niemitalo4. The environment prefix is "f2".
As an example, below we can see the code for Olli Niemitalo’s
analytic filter, which will be essential for the calculation of low-
level information such as instantaneous amplitude, frequency, and
phase:

analytic(x) = real , imaginary
with {

im_c =
(0.47944111608296202665 ,

0.87624358989504858020 ,
0.97660296916871658368 ,
0.99749940412203375040);

re_c =
(0.16177741706363166219 ,

0.73306690130335572242 ,
0.94536301966806279840 ,
0.99060051416704042460);

tf(c, y, x) = c * (x + y’) - x’’;
imaginary = x’ :

seq(i, 4, tf(ba.take(i + 1, im_c))
~ _);

real = x :
seq(i, 4, tf(ba.take(i + 1, re_c))

~ _);
};

Below, instead, we can see a second-order state-variable fil-
ter with zero-delay feedback topology. The filter has the follow-
ing outputs: lowpass, highpass, bandpass, bandpass (normalised),
lowshelf, highshelf, bandshelf, bandstop, peak, and allpass.

svf2blti(cf, q, k, in) = tick
~ (_ ,

_) : (! ,
! ,
_ ,

4dsp.stackexchange.com/questions/37411/
iir-hilbert-transformer/59157#59157

_ ,
_ ,
_ ,
_ ,
_ ,
_ ,
_ ,
_ ,
_)

with {
r = m2.div(1, (2 * q));
wa = (2 * ma.SR) *
tan(m2.w(cf) / 2);

g = wa / ma.SR / 2;
tick(s1, s2) = u1 ,

u2 ,
lp ,
hp ,
bp ,
bp_norm ,
ls ,
hs ,
b_shelf ,
notch ,
peak ,
ap

with {
u1 = v1 + bp;
u2 = v2 + lp;
v1 = hp * g;
v2 = bp * g;
hp = m2.div((in - 2 * r

* s1 - g * s1 - s2),
(1 + 2 * r *

g + g *
g));

bp = s1 + v1;
lp = s2 + v2;
bp_norm = bp * 2 * r;
b_shelf = in + k *

bp_norm;
ls = in + k * lp;
hs = in + k * hp;
notch = in - bp_norm;
ap = in - 4 * r * bp;
peak = lp - hp;

};
};

2.5. InformationEOC.lib

InformationEOC.lib is one of the most important modules and it
contains functions, several of which are original designs, for low-
level and high-level information processing. Some of the low-
level algorithms include loudness, spectral centroid, roughness,
and noisiness. Among the high-level ones we have dynamicity,
heterogeneity, and complexity. The module also includes a vast
set of peak envelope analysis functions based on both switching or
cascaded architectures [30].

Algorithms such as spectral centroid and noisiness follow an

IFC-2

dsp.stackexchange.com/questions/37411/iir-hilbert-transformer/59157#59157
dsp.stackexchange.com/questions/37411/iir-hilbert-transformer/59157#59157

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

adaptive design. The spectral centroid is a self-regulating mech-
anism based on a negative feedback loop around a crossover that
finds the cut-off at which the power of high and low spectra is
approximately equal. Specifically, the system (minimally) oscil-
lates around a balancing spectral point. The noisiness algorithm,
instead, calculates the magnitude of the derivative of the zero-
crossing rate, while the differentiation period is determined by
the spectral centroid of the input signal, providing a noisiness in-
dex that follows more closely a perceptual behaviour. Other low-
level information processing algorithms include the measurement
of roughness and spectral spread, as well as lowest and highest
frequency component measurements.

The high-level algorithms are based on principles of dynami-
cal systems and complex systems, as well as recurrence quantifi-
cation analysis and state-space analysis through absolute average
deviation. These principles are applied to low-level information
signals, which are then combined nonlinearly. Notably, these al-
gorithms are dynamicity, heterogeneity, and complexity. The dy-
namicity algorithm detects variations in the low-level information
signals. The heterogeneity algorithm is based on average abso-
lute deviation and it is related to the unpredictability of the state-
space of the low-level information signals. The complexity mea-
surement, instead, is based on the concept of edge of chaos and it
detects variations in the heterogeneity of the low-level information
signals. These algorithms are discussed in detail in [31].

2.6. MathsEOC.lib

MathsEOC.lib is the largest module in the library with almost 2000
lines of code. The module includes functions for statistics, linear
and nonlinear fuzzy logic, interpolators, network topologies, ma-
trixes, linear and nonlinear mapping, windowing functions, hys-
teresis, angular frequency, and several time constants for exponen-
tial decays in one-pole systems. Furthermore, the module includes
a set of sequences such as the Fibonacci sequence, to name one
of the most famous, that may be deployed in feedback delay net-
works as a replacement for standard prime or co-prime delays for
the investigation of new behaviours.

2.7. OscillatorsEOC.lib

The oscillatorsEOC.lib module is mainly for band-limited oscilla-
tors of classic waveforms based on integration of band-limited im-
pulse trains (BLIT). Some of the functions implement the systems
described in [32], such as the bipolar BLIT with arbitrary duty cy-
cles. Others, instead, follow a different design or have been mod-
ified by the author. Particularly, unlike the technique described in
by Stilson and Smith where the bipolar BLIT is implemented by
summation of a unipolar BLIT with its delayed and inverted copy,
the technique showed here uses an even ratio between the frequen-
cies of the sine functions used to generate the sinc function. This
results in a correct harmonic content (odd harmonics) for any given
BLIT frequencies.

Despite these oscillators provide the most accurate frequency
content for band-limited classic oscillators compared to FAUST’s
band-limited oscillators, the oscillators in the library presented
here show irregularities in time-variant configurations due to the
integrators. Furthermore, it is worth mentioning that the harmonic
content of the oscillators in oscillatorsEOC.lib can be varied ar-
bitrarily. Specifically, the variation is locked to the beginning of
each cycle in the sinc function to avoid discontinuities, which al-
lows for harmonic modulation as exploration of a new synthesis

technique. Below, we can see the code for the bipolar BLIT. Note
that the bipolar sinc function asinc_bi is in mathsEOC.lib.

asinc_bi(M, x) =
m2.if(phase < ma.EPSILON,

1,
m2.if(abs(.5 - phase) < ma.EPSILON,

-1,
sin(M1 * m2.twopi * phase) /

(sin(m2.twopi * phase) *
M1)))

with {
M1 = rint(M) * 2;
phase = ma.frac(x);

};

blit_bi(h, f) = m2.asinc_bi(h1, phase)
with {

lim = rint(m2.div(ma.SR, f) / 4);
h1 = ba.sAndH(trigger, min(lim,h));
trigger = (ma.signum(f) *

(phase - phase’) < 0);
phase = os.phasor(1, f);

};

Below, instead, we can see the code for what is arguably the
best-performing recursive quadratic oscillator available, designed
by Martin Vicanek5.

osc_quad(f) = tick ~ (_ , _)
with {

k1 = tan(ma.PI * f / ma.SR);
k2 = 2 * k1 / (1 + k1 * k1);
tick(u, v) =

omega - k1 *
(v + k2 * omega) ,

v + k2 * omega
with {

omega =
(u + au.dirac) -

k1 * v;
};

};

2.8. OutformationEOC.lib

This module contains functions for nontrivial transformation and
generation of audio streams. Here, we can find standard tech-
niques such as pitch shifting using delay-modulated with overlap-
add-to-one delay lines, or time stretching following the same prin-
ciples. Alternatively, some original functions for audio process-
ing include a zero-crossing-synchronous granulator and recursive
nonlinear transfer function. The first algorithm generates contin-
uous streams of non-overlapping grains based on first and second
derivative analysis to minimise distortion introduced by grain con-
catenation. The second one is a recursive design for a waveshaper
in which the output determines the transfer function which deter-
mines the output, circularly. The module also contains standard
granular processing techniques as well as less common ones using

5https://vicanek.de/articles/QuadOsc.pdf

IFC-3

https://vicanek.de/articles/QuadOsc.pdf

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

non-homogenous overlap-add-to-one strategies. Furthermore, the
module includes iteration systems such as elementary cellular au-
tomata, that can be used both for formal and timbral processing,
as well as chaotic systems such as the Lorenz system, than can be
used as a nontrivial oscillator, provided that the output is scaled
accordingly.

The author is planning on extending this module with a set of
complex oscillators based on self-oscillating and self-modulating
nonlinear feedback delay network (FDN). The FDN may follow a
similar approach as that found in standard artificial reverberators,
that is delay lengths chosen as prime or coprime numbers [33],
although particular focus will be given to the exploration of delay
lengths based on some of the number sequences in mathsEOC.lib.
Furthermore, each node in the network would include a more or
less articulated nonlinear element – for example, a waveshaper or
a frequency modulation unit – so as to realise the paradigm of high-
level nonlinear iterated function to achieve complex oscillations.

Below we can find the code for the implementation of the
Lorenz system.

lorenz(x0, y0, z0, a, b, r, dt) =
iterate ~ (_ , _ , _)
with {

iterate(x, y, z) =
x1 + a * (y1 - x1) * dt,
y1 + (r * x1 - y1 - x1 * z1) *

dt,
z1 + (x1 * y1 - b * z1) * dt
with {

x1 = x + x0 - x0’;
y1 = y + y0 - y0’;
z1 = z + z0 - z0’;

};
};

2.9. StabilityEOC

Finally, the last library module includes a set of functions for sta-
bility processing that can be deployed in self-oscillating systems or
any other system requiring control over the boundaries of ampli-
tude values. Depending on the specific applications, it is possible
to use different designs ranging from bounded saturators, looka-
head limiters, and adaptive self-regulating dynamic processing.

The bounded saturators are mostly based on [28]. These sat-
urators provide different spectral responses and have adjustable
upper and lower bounds. Particularly, this approach for stability
processing in feedback systems can be particularly powerful when
combined with filters. Limiting the amplitude of a signal through
saturators results in added harmonics due to waveshaping effects.
The iterative process of increases the spectral content can be par-
ticularly effective to generate dynamical and rich spectra. On the
other hand, if these are combined with filters, two competing posi-
tive and negative feedback loops can be established to enhance the
complexity of the outcome [23]. A creative use of bounded sat-
urators in FDN systems can be found in [24] in the work Phase
Transitions (2019), which is also entirely implemented in FAUST6.

The lookahead design is inspired to a post on limiters by IO-
hannes Zmölnig7, although the delay, time constants, and smooth-

6https://rottingsounds.org/threads/auditorium/
phase-transitions/

7http://iem.at/~zmoelnig/publications/limiter/

ing circuits are different. The general idea for lookahead limiting
is to analyse the amplitude profile of the input, delay the input
signal itself, and perform an amplitude correction through a curve
that is slow enough as not to introduce considerable distortion. The
amplitude profile for the system in this module is calculated using
a cascaded circuit with attack, hold, and release times. This cir-
cuit has the advantage of having a smoother curve in the transition
between attack, hold, and release phases, although the effective at-
tack, hold, and release times are interrelated as this design is based
on cascaded filters. Particularly, we have a peak holder feeding
into a peak envelope feeding into a one-pole lowpass. Consider-
ing the 2πτ time constant for one-pole lowpass where most of the
final value is reached after the attack time, we will only have a
hold segment in the resulting envelope function if the hold time
is greater than the attack time, and the hold segment will be ap-
proximately the hold time minus the attack time. Otherwise, only
attack and release segments will result from this cascaded design.
Furthermore, the attack time should still be much smaller than the
release time to minimally affect the decay. Despite these flaws,
this approach results in a cleaner output due to smoother transi-
tions. Alternatively, an envelope function with switching attack,
hold, and release sections can be found in mathsEOC.lib. With re-
gard to the 2πtau time constant used for this design, the lookahead
delay is chosen as the same as the attack time so that the peaks in
the amplitude profile are synchronised with the peaks in the input
signal, resulting in a limiter with brickwall characteristics.

Finally, another approach to handle stability in self-oscillating
systems is to deploy compressor-like units with adaptive designs.
Similarly to lookahead limiting, this approach analyses the input
signal to extract an amplitude profile and, subsequently, perform
a correction to keep amplitude levels within desired ranges. Un-
like the lookahead limiting function above where the input is unaf-
fected if below the limiting threshold, this design performs a con-
tinuous adjustment increasing or reducing the input gain as an in-
verse relationship to the envelope curve. Essentially, this design
consists of a negative feedback mechanism that keeps the ampli-
tude levels within working bounds. The envelope profile can be
calculated, for example, using RMS or peak envelope processors,
while the relationship between gain and envelope profile can be
nonlinear when using powers to shape the envelope. This tech-
nique is particularly interesting as it allows for nontrivial formal
developments when using large analysis windows.

3. CONCLUSIONS

We have provided a brief historical background on cybernetics and
complexity and we have provided a context for the interactions that
these disciplines had with the development of new music. We have
also provided musical examples that show the importance of recur-
sive designs, adaptation, and complexity for the investigation of
new music. Then, we have introduced the Edge of Chaos library, a
large set of Faust functions that provide the basic building blocks
for users who are interested in developing music CASes. The
library is fully-documented and it includes both established and
original algorithms for standard and nonconventional sound and
music computing. The library consists of eight dedicated modules
that can be combined following an agent-based modelling and self-
modulating paradigm to realise autonomous or semi-autonomous
music systems.

The Edge of Chaos library will be maintained and expanded as
much as possible. The future developments for the software library

IFC-4

https://rottingsounds.org/threads/auditorium/phase-transitions/
https://rottingsounds.org/threads/auditorium/phase-transitions/
http://iem.at/~zmoelnig/publications/limiter/

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

will aim at turning it into a CASes generator. Within the FAUST
environment, all of the elements in the library would be interfaced
through a single command-line operation that can describe the fun-
damental characteristics of a complex network. Following Kauff-
man’s approach with random Boolean networks [34, 35], CASes
can be generated using a single seed that feeds a set of iterated
nonlinear functions to output uncorrelated pseudo-random values.
These values would then be used to select the nodes in the informa-
tion processing and sound processing networks of each agent, the
relationships between agents, the network topologies, and more.
The resulting CASes would then be black boxes whose structures
and organisations are randomly determined, although the systems
would be entirely deterministic in their behaviours. Furthermore,
the DSP network that is generated randomly can still be explored
by the user using Faust’s block diagram generation to gain insights
over particular DSP connections that appear to be repeatedly con-
vincing for the creative practice.

4. APPENDIX

4.1. FiltersEOC.lib list of functions

analytic,
apbi,
apblti,
biquad,
bpbi,
bp2blti,
bsbi,
cic,
hpbi,
hpblti,
hp1p,
hp1pint,
hp1praw,
hp1p1z,
hp1p1zraw,
int_clip,
int_eu_b,
int_eu_clip,
int_eu_f,
int_trap,
int_trap_clip,
integrator,
leaky,
lpbi,
lpblti,
lp1p,
lp1pint,
lp1praw,
lp1p1z,
lp1p1zraw,
sah_inv,
slew_limiter,
svfblti,
svf2blti,
xover_butt,
xover1p1z,
xover1p1z_ada,
xover1praw,
xover1p1zraw,

xover2p2z.

4.2. MathsEOC.lib list of functions

aad,
asinc_bi,
asinc_uni,
avg_ari,
avg_ari_w,
avg_geo,
avg_geo_w,
avg_harm,
avg_harm_w,
avg_pow,
avg_quad,
bip,
complement,
dec2bin,
delta,
delta2,
diff,
div,
factorial,
hp_and,
hp_imp,
hp_nand,
hp_nimp,
hp_nor,
hp_nxr,
hp_or,
hp_xor,
interpolate_mn,
if,
ifN,
inv,
line,
line_reset,
map_lin,
map_par,
map_pcw,
map_log,
map_pow,
matrix,
maxN,
minN,
ny,
ph,
primes,
prime_base_pow,
relay_hysteron,
round_pow2,
rt9,
rt19,
rt55,
rt60,
seq_catalan,
seq_fibonacci,
seq_hexagonal,
seq_lazy_caterer,
seq_magic_number,
seq_pentagonal,

IFC-5

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

seq_square,
seq_triangular
sd,
sp,
topologies,
top_anti_diag,
top_diagonal,
top_diag_shift,
top_full,
top_tri_low,
top_tri_up,
twopi
uni,
unit_log,
var,
w,
window_hann,
window_sine,
wrap,
y_and,
y_or,
zeropad_up,
zeropad_down,
z_and,
z_imp,
z_nand,
z_nimp,
z_nor,
z_nxr,
z_or,
z_xor.

4.3. OutformationEOC.lib list of functions

eca,
grains_dl_nhw,
grains_dl_zc,
grains_zc,
lorenz,
pitch_shift,
pole_mod,
rev_fdn_smo,
rev_fdn_pol,
sampler,
ssbm,
time_stretch,
tvtf.

5. REFERENCES

[1] Edgar Morin, La nature de la nature, vol. 123, Seuil Paris,
1977.

[2] Venkateswararao Vemuri, Modeling of complex systems: an
introduction, Academic Press, 2014.

[3] Ilya Prigogine and Grégoire Nicolis, “Self-organisation in
nonequilibrium systems: towards a dynamics of complexity,”
in Bifurcation analysis, pp. 3–12. Springer, 1985.

[4] Humberto R Maturana and Francisco J Varela, “Autopoiesis:
The organization of the living,” Autopoiesis and cognition:
The realization of the living, vol. 42, pp. 59–138, 1980.

[5] Stuart A Kauffman, “Emergent properties in random com-
plex automata,” Physica D: Nonlinear Phenomena, vol. 10,
no. 1-2, pp. 145–156, 1984.

[6] Christopher G Langton, “Studying artificial life with cellular
automata,” Physica D: Nonlinear Phenomena, vol. 22, no.
1-3, pp. 120–149, 1986.

[7] Frank Rosenblatt, “The perceptron: a probabilistic model for
information storage and organization in the brain.,” Psycho-
logical review, vol. 65, no. 6, pp. 386, 1958.

[8] H Holland John, “Adaptation in natural and artificial sys-
tems,” Ann Arbor: University of Michigan Press, 1975.

[9] Uri Wilensky and William Rand, An introduction to agent-
based modeling: modeling natural, social, and engineered
complex systems with NetLogo, MIT Press, 2015.

[10] J Doyne Farmer, “Market force, ecology and evolution,” In-
dustrial and Corporate Change, vol. 11, no. 5, pp. 895–953,
2002.

[11] J Doyne Farmer and François Lafond, “How predictable is
technological progress?,” Research Policy, vol. 45, no. 3, pp.
647–665, 2016.

[12] David C Krakauer, “Darwinian demons, evolutionary com-
plexity, and information maximization,” Chaos: An Inter-
disciplinary Journal of Nonlinear Science, vol. 21, no. 3, pp.
037110, 2011.

[13] Marco Lagi, Karla Z Bertrand, and Yaneer Bar-Yam, “The
food crises and political instability in north africa and the
middle east,” Available at SSRN 1910031, 2011.

[14] Stephanie Forrest, Steven A Hofmeyr, and Anil Somayaji,
“Computer immunology,” Communications of the ACM, vol.
40, no. 10, pp. 88–97, 1997.

[15] Luc Steels, “The synthetic modeling of language origins,”
Evolution of communication, vol. 1, no. 1, pp. 1–34, 1997.

[16] Luc Steels, “Evolving grounded communication for robots,”
Trends in cognitive sciences, vol. 7, no. 7, pp. 308–312, 2003.

[17] Alice Eldridge, Collaborating with the behaving machine:
simple adaptive dynamical systems for generative and inter-
active music, Ph.D. thesis, 2007.

[18] Alice Eldridge, Alan Dorin, and Jon McCormack, “Manip-
ulating artificial ecosystems,” in Workshops on Applications
of Evolutionary Computation. Springer, 2008, pp. 392–401.

[19] Alice Eldridge and Chris Kiefer, “The self-resonating feed-
back cello: interfacing gestural and generative processes in
improvised performance,” Proceedings of New Interfaces for
Music Expression 2017, vol. 2017, pp. 25–29, 2017.

[20] Agostino Di Scipio, “’sound is the interface’: from inter-
active to ecosystemic signal processing,” Organised Sound,
vol. 8, no. 3, pp. 269–277, 2003.

[21] Dario Sanfilippo and Andrea Valle, “Feedback systems: An
analytical framework,” Computer Music Journal, vol. 37, no.
2, pp. 12–27, 2013.

[22] Dario Sanfilippo, “Time-variant infrastructures and dy-
namical adaptivity for higher degrees of complexity in au-
tonomous music feedback systems: the Order from Noise
(2017) project,” Musica/Tecnologia, vol. 12, no. 1, pp. 119–
129, 2018.

IFC-6

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

[23] Dario Sanfilippo, “Complex adaptation in audio feedback
networks for the synthesis of music and sounds,” Computer
Music Journal (pending peer-review), 2020.

[24] Dario Sanfilippo, Complex musical behaviours via time-
variant audio feedback networks and distributed adaptation:
a study of autopoietic infrastructures for real-time perfor-
mance systems, Ph.D. thesis, University of Edinburgh, 2020.

[25] Dario Sanfilippo and Agostino Di Scipio, “Environment-
mediated coupling of autonomous sound-generating systems
in live performance: An overview of the Machine Milieu
project,” in Proceedings of the 14th Sound and Music Com-
puting Conference, Espoo, Finland, 2017, pp. 5–8.

[26] Agostino Di Scipio and Dario Sanfilippo, “Defining ecosys-
temic agency in live performance. The Machine Milieu
project as practice-based research,” Array Journal, vol. 12,
pp. 28–43, 2019.

[27] John H Holland, Complexity: A very short introduction,
OUP Oxford, 2014.

[28] Vadim Zavalishin, “The art of VA filter design,” Native In-
struments, 2012.

[29] William C Pirkle, Designing audio effect plug-ins in C++
with digital audio signal processing theory, Taylor & Fran-
cis, 2013.

[30] Udo Zölzer, Digital audio signal processing, John Wiley &
Sons, 2008.

[31] Dario Sanfilippo, “Time-domain algorithms for low-level
and high-level information processing,” Computer Music
Journal (pending peer-review), 2020.

[32] Timothy Stilson and Julius O Smith III, “Alias-free digital
synthesis of classic analog waveforms,” in ICMC, 1996.

[33] Davide Rocchesso and Julius O Smith, “Circulant and el-
liptic feedback delay networks for artificial reverberation,”
IEEE Transactions on Speech and Audio Processing, vol. 5,
no. 1, pp. 51–63, 1997.

[34] Stuart A Kauffman, “Metabolic stability and epigenesis in
randomly constructed genetic nets,” Journal of theoretical
biology, vol. 22, no. 3, pp. 437–467, 1969.

[35] Stuart A Kauffman, The origins of order: Self-organization
and selection in evolution, Oxford University Press, USA,
1993.

IFC-7

	1 Background
	2 Modules in the Edge of Chaos library
	2.1 AllEOC.lib and edgeofchaos.lib
	2.2 AuxiliaryEOC.lib
	2.3 DelaysEOC.lib
	2.4 FiltersEOC.lib
	2.5 InformationEOC.lib
	2.6 MathsEOC.lib
	2.7 OscillatorsEOC.lib
	2.8 OutformationEOC.lib
	2.9 StabilityEOC

	3 Conclusions
	4 Appendix
	4.1 FiltersEOC.lib list of functions
	4.2 MathsEOC.lib list of functions
	4.3 OutformationEOC.lib list of functions

	5 References

